List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8083498/publications.pdf

Version: 2024-02-01

399 papers	80,332 citations	529 127 h-index	429 275 g-index
423	423	423	48853
all docs	docs citations	times ranked	citing authors

KEVIN L TRACEV

#	Article	IF	CITATIONS
1	Peripheral nerve stimulation and immunity: the expanding opportunities for providing mechanistic insight and therapeutic intervention. International Immunology, 2022, 34, 107-118.	4.0	22
2	A fully implantable wireless bidirectional neuromodulation system for mice. Biosensors and Bioelectronics, 2022, 200, 113886.	10.1	21
3	HMGB1-mediated restriction of EPO signaling contributes to anemia of inflammation. Blood, 2022, 139, 3181-3193.	1.4	23
4	Exploring the vagus nerve and the inflammatory reflex for therapeutic benefit in chronic spinal cord injury. Current Opinion in Neurology, 2022, Publish Ahead of Print, .	3.6	3
5	Oral famotidine versus placebo in non-hospitalised patients with COVID-19: a randomised, double-blind, data-intense, phase 2 clinical trial. Gut, 2022, 71, 879-888.	12.1	24
6	Vagus Nerve Stimulation: A Potential Therapeutic Role in Childhood Nephrotic Syndrome?. American Journal of Nephrology, 2022, 53, 290-296.	3.1	2
7	Stimulation of the hepatoportal nerve plexus with focused ultrasound restores glucose homoeostasis in diabetic mice, rats and swine. Nature Biomedical Engineering, 2022, 6, 683-705.	22.5	28
8	Protective Effects of Pegylated Choline Acetyltransferase in a Murine Model of DSS Colitis. FASEB Journal, 2022, 36, .	0.5	0
9	Famotidine exerts antiâ€inflammatory effects via a vagus nerveâ€dependent mechanism. FASEB Journal, 2022, 36, .	0.5	1
10	Vagus Nerve Sensory Neurons Respond Distinctly to Specific Inflammatory Mediators. FASEB Journal, 2022, 36, .	0.5	0
11	Famotidine activates the vagus nerve inflammatory reflex to attenuate cytokine storm. Molecular Medicine, 2022, 28, 57.	4.4	13
12	Transcutaneous auricular vagus nerve stimulation reduces pain and fatigue in patients with systemic lupus erythematosus: a randomised, double-blind, sham-controlled pilot trial. Annals of the Rheumatic Diseases, 2021, 80, 203-208.	0.9	82
13	The Cholinergic Drug Galantamine Alleviates Oxidative Stress Alongside Anti-inflammatory and Cardio-Metabolic Effects in Subjects With the Metabolic Syndrome in a Randomized Trial. Frontiers in Immunology, 2021, 12, 613979.	4.8	24
14	Targeted peripheral focused ultrasound stimulation attenuates obesity-induced metabolic and inflammatory dysfunctions. Scientific Reports, 2021, 11, 5083.	3.3	22
15	Monoclonal antibodies capable of binding SARS-CoV-2 spike protein receptor-binding motif specifically prevent GM-CSF induction. Journal of Leukocyte Biology, 2021, 111, 261-267.	3.3	13
16	Development and characterization of a chronic implant mouse model for vagus nerve stimulation. ELife, 2021, 10, .	6.0	28
17	Hacking the inflammatory reflex. Lancet Rheumatology, The, 2021, 3, e237-e239.	3.9	4
18	Introduction: Electronic Medicine in Immunology Special Issue Part 1. International Immunology, 2021, 33, 299-300.	4.0	2

#	Article	IF	CITATIONS
19	Possible inhibition of GM-CSF production by SARS-CoV-2 spike-based vaccines. Molecular Medicine, 2021, 27, 49.	4.4	7
20	The Cholinergic Drug Pyridostigmine Alleviates Inflammation During LPS-Induced Acute Respiratory Distress Syndrome. Frontiers in Pharmacology, 2021, 12, 624895.	3.5	12
21	The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanismsâ€ı current progress, challenges, and charting the future. Bioelectronic Medicine, 2021, 7, 7.	2.3	5
22	Redox modifications of cysteine residues regulate the cytokine activity of HMGB1. Molecular Medicine, 2021, 27, 58.	4.4	25
23	From human to mouse and back offers hope for patients with fibromyalgia. Journal of Clinical Investigation, 2021, 131, .	8.2	4
24	HMGB1 released from nociceptors mediates inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
25	Systemic administration of choline acetyltransferase decreases blood pressure in murine hypertension. Molecular Medicine, 2021, 27, 133.	4.4	5
26	Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells, 2021, 10, 3323.	4.1	32
27	Human Dermcidin Protects Mice Against Hepatic Ischemia-Reperfusion–Induced Local and Remote Inflammatory Injury. Frontiers in Immunology, 2021, 12, 821154.	4.8	4
28	Bioelectronic Medicine: From Preclinical Studies on the Inflammatory Reflex to New Approaches in Disease Diagnosis and Treatment. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a034140.	6.2	54
29	An impedance matching algorithm for common-mode interference removal in vagus nerve recordings. Journal of Neuroscience Methods, 2020, 330, 108467.	2.5	10
30	Evidence of Long-range nerve pathways connecting and coordinating activity in secondary lymph organs. Bioelectronic Medicine, 2020, 6, 21.	2.3	4
31	Identification of a brainstem locus that inhibits tumor necrosis factor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29803-29810.	7.1	76
32	Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19?. Molecular Medicine, 2020, 26, 42.	4.4	176
33	The α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuates hyperoxia-induced acute inflammatory lung injury by alleviating the accumulation of HMGB1 in the airways and the circulation. Molecular Medicine, 2020, 26, 63.	4.4	32
34	Expression of Concern to: Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Molecular Medicine, 2020, 26, 18.	4.4	3
35	Identification of tetranectin-targeting monoclonal antibodies to treat potentially lethal sepsis. Science Translational Medicine, 2020, 12,	12.4	34
36	Specific vagus nerve stimulation parameters alter serum cytokine levels in the absence of inflammation. Bioelectronic Medicine, 2020, 6, 8.	2.3	40

#	Article	IF	CITATIONS
37	Roadmap for the Emerging Field of Cancer Neuroscience. Cell, 2020, 181, 219-222.	28.9	182
38	Auricular neural stimulation as a new non-invasive treatment for opioid detoxification. Bioelectronic Medicine, 2020, 6, 7.	2.3	24
39	Famotidine Use Is Associated With Improved Clinical Outcomes in Hospitalized COVID-19 Patients: A Propensity Score Matched Retrospective Cohort Study. Gastroenterology, 2020, 159, 1129-1131.e3.	1.3	214
40	Peripheral Focused Ultrasound Stimulation (pFUS): New Competitor in Pharmaceutical Markets?. SLAS Technology, 2019, 24, 448-452.	1.9	12
41	Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity. Bioelectronic Medicine, 2019, 5, 9.	2.3	26
42	Characterization of inflammation and insulin resistance in highâ€fat dietâ€induced male C57BL/6J mouse model of obesity. Animal Models and Experimental Medicine, 2019, 2, 252-258.	3.3	58
43	An Effective Method for Acute Vagus Nerve Stimulation in Experimental Inflammation. Frontiers in Neuroscience, 2019, 13, 877.	2.8	40
44	HMGB1–C1q complexes regulate macrophage function by switching between leukotriene and specialized proresolving mediator biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23254-23263.	7.1	64
45	Bioelectronic medicine: updates, challenges and paths forward. Bioelectronic Medicine, 2019, 5, 1.	2.3	41
46	Enhanced Macrophage Pannexin 1 Expression and Hemichannel Activation Exacerbates Lethal Experimental Sepsis. Scientific Reports, 2019, 9, 160.	3.3	30
47	Optogenetic activation of fiber-specific compound action potentials in the mouse vagus nerve. , 2019, ,		3
48	Investigational treatment of rheumatoid arthritis with a vibrotactile device applied to the external ear. Bioelectronic Medicine, 2019, 5, 4.	2.3	55
49	Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation. Nature Communications, 2019, 10, 952.	12.8	121
50	Forebrain Cholinergic Signaling Regulates Innate Immune Responses and Inflammation. Frontiers in Immunology, 2019, 10, 585.	4.8	55
51	Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Molecular Medicine, 2019, 25, 13.	4.4	75
52	Therapeutic Targeting of High-Mobility Group Box-1 in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1566-1569.	5.6	21
53	Choline acetyltransferase–expressing T cells are required to control chronic viral infection. Science, 2019, 363, 639-644.	12.6	90
54	The microbiota regulate neuronal function and fear extinction learning. Nature, 2019, 574, 543-548.	27.8	302

#	Article	IF	CITATIONS
55	Buprenorphine Markedly Elevates a Panel of Surrogate Markers in a Murine Model of Sepsis. Shock, 2019, 52, 550-553.	2.1	14
56	High mobility group boxâ€1 induces proâ€inflammatory signaling in human nucleus pulposus cells via tollâ€like receptor 4â€dependent pathway. Journal of Orthopaedic Research, 2019, 37, 220-231.	2.3	39
5 7	The Role of Sensory Nerves in Modulating Antigen Specific Immune Responses. FASEB Journal, 2019, 33, 859.8.	0.5	0
58	High Intensity Focused Ultrasound Treatment Attenuates Disease Progression in a Mouse Model of Nonâ€Alcoholic Steatohepatitis. FASEB Journal, 2019, 33, 582.1.	0.5	0
59	Optogenetic Stimulation of Cholinergic Neurons in the Brainstem Induces Splenic Nerve Activity and Attenuates Systemic Inflammation. FASEB Journal, 2019, 33, 740.5.	0.5	0
60	Molecular and Functional Neuroscience in Immunity. Annual Review of Immunology, 2018, 36, 783-812.	21.8	304
61	Connexin 43 Hemichannel as a Novel Mediator of Sterile and Infectious Inflammatory Diseases. Scientific Reports, 2018, 8, 166.	3.3	50
62	Identification of ethyl pyruvate as a NLRP3 inflammasome inhibitor that preserves mitochondrial integrity. Molecular Medicine, 2018, 24, 8.	4.4	29
63	Standardization of methods to record Vagus nerve activity in mice. Bioelectronic Medicine, 2018, 4, 3.	2.3	43
64	Adenylyl Cyclase 6 Mediates Inhibition of TNF in the Inflammatory Reflex. Frontiers in Immunology, 2018, 9, 2648.	4.8	49
65	Aerobic Exercise Training and Inducible Inflammation: Results of a Randomized Controlled Trial in Healthy, Young Adults. Journal of the American Heart Association, 2018, 7, e010201.	3.7	21
66	The Endotoxin Delivery Protein HMGB1 Mediates Caspase-11-Dependent Lethality in Sepsis. Immunity, 2018, 49, 740-753.e7.	14.3	377
67	Selective Optogenetic Activation of the Inflammatory Reflex Using Multisite Surgical Approach. Journal of the American College of Surgeons, 2018, 227, S82.	0.5	0
68	Neurons Are the Inflammatory Problem. Cell, 2018, 173, 1066-1068.	28.9	12
69	Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons. Frontiers in Immunology, 2018, 9, 638.	4.8	15
70	Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4843-E4852.	7.1	147
71	Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Molecular Medicine, 2018, 24, 21.	4.4	50
72	Neural regulation of immunity: molecular mechanisms and clinical translation. Nature Neuroscience, 2017, 20, 156-166.	14.8	357

KEVIN J TRACEY

#	Article	IF	CITATIONS
73	Essential Neuroscience in Immunology. Journal of Immunology, 2017, 198, 3389-3397.	0.8	99
74	Expression of Concern: The haptoglobin beta subunit sequesters <scp>HMGB</scp> 1 toxicity in sterile and infectious inflammation. Journal of Internal Medicine, 2017, 282, 76-93.	6.0	33
75	Mechanisms and Therapeutic Relevance of Neuro-immune Communication. Immunity, 2017, 46, 927-942.	14.3	445
76	Targeting neural reflex circuits in immunity to treat kidney disease. Nature Reviews Nephrology, 2017, 13, 669-680.	9.6	54
77	Bioelectronic medicine: technology targeting molecular mechanisms for therapy. Journal of Internal Medicine, 2017, 282, 3-4.	6.0	65
78	New melanocortin-like peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): possible endocrine-like function for microbes of the gut. Npj Biofilms and Microbiomes, 2017, 3, 31.	6.4	17
79	Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors. Frontiers in Immunology, 2017, 8, 1673.	4.8	74
80	Galantamine alleviates inflammation and insulin resistance in patients with metabolic syndrome in a randomized trial. JCI Insight, 2017, 2, .	5.0	64
81	Neuronal Circuits Modulate Antigen Flow Through Lymph Nodes. Bioelectronic Medicine, 2016, 3, 18-28.	2.3	23
82	Obesity Paradox, Obesity Orthodox, and the Metabolic Syndrome: An Approach to Unity. Molecular Medicine, 2016, 22, 873-885.	4.4	43
83	Emetine Di-HCl Attenuates Type 1 Diabetes Mellitus in Mice. Molecular Medicine, 2016, 22, 585-596.	4.4	5
84	Cytokine-specific Neurograms in the Sensory Vagus Nerve. Bioelectronic Medicine, 2016, 3, 7-17.	2.3	108
85	Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8284-8289.	7.1	742
86	C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood, 2016, 128, 2218-2228.	1.4	130
87	A novel high mobility group box 1 neutralizing chimeric antibody attenuates drugâ€induced liver injury and postinjury inflammation in mice. Hepatology, 2016, 64, 1699-1710.	7.3	96
88	Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nature Biotechnology, 2016, 34, 1066-1071.	17.5	74
89	A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy, 2016, 12, 2374-2385.	9.1	78

28.9 52

#	Article	IF	CITATIONS
91	Novel strategies for targeting innate immune responses to influenza. Mucosal Immunology, 2016, 9, 1173-1182.	6.0	76
92	In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson's disease which can be attenuated by glycyrrhizin. Neurobiology of Disease, 2016, 91, 59-68.	4.4	78
93	Regulation of Posttranslational Modifications of HMCB1 During Immune Responses. Antioxidants and Redox Signaling, 2016, 24, 620-634.	5.4	98
94	Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight, 2016, 1, .	5.0	112
95	High-Density Lipoprotein (HDL) Counter-Regulates Serum Amyloid A (SAA)-Induced sPLA2-IIE and sPLA2-V Expression in Macrophages. PLoS ONE, 2016, 11, e0167468.	2.5	24
96	Inhibition of Human Erythropoiesis during Inflammation Is Mediated By High Mobility Group Box Protein 1 (HMGB1) through Decreased Commitment of Hematopoietic Stem Cells to the Erythroid Lineage and By Increased Apoptosis of Terminally Differentiating Erythroblasts. Blood, 2016, 128, 702-702.	1.4	0
97	Cytokine-specific Neurograms in the Sensory Vagus Nerve. Bioelectronic Medicine, 2016, 3, 7-17.	2.3	50
98	Serum Amyloid A Stimulates PKR Expression and HMGB1 Release Possibly through TLR4/RAGE Receptors. Molecular Medicine, 2015, 21, 515-525.	4.4	29
99	HMCB1 Mediates Anemia of Inflammation in Murine Sepsis Survivors. Molecular Medicine, 2015, 21, 951-958.	4.4	45
100	Single-Pulse and Unidirectional Electrical Activation of the Cervical Vagus Nerve Reduces Tumor Necrosis Factor in Endotoxemia. Bioelectronic Medicine, 2015, 2, 37-42.	2.3	65
101	The HIV Protease Inhibitor Saquinavir Inhibits HMGBI-Driven Inflammation by Targeting the Interaction of Cathepsin V with TLR4/MyD88. Molecular Medicine, 2015, 21, 749-757.	4.4	17
102	Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice. Molecular Medicine, 2015, 21, 702-708.	4.4	29
103	MD-2 is required for disulfide HMGB1–dependent TLR4 signaling. Journal of Experimental Medicine, 2015, 212, 5-14.	8.5	295
104	Stress Induces the Danger-Associated Molecular Pattern HMGB-1 in the Hippocampus of Male Sprague Dawley Rats: A Priming Stimulus of Microglia and the NLRP3 Inflammasome. Journal of Neuroscience, 2015, 35, 316-324.	3.6	177
105	DAMP Signaling is a Key Pathway Inducing Immune Modulation after Brain Injury. Journal of Neuroscience, 2015, 35, 583-598.	3.6	275
106	Sepsis: a roadmap for future research. Lancet Infectious Diseases, The, 2015, 15, 581-614.	9.1	827
107	Shock Medicine. Scientific American, 2015, 312, 28-35.	1.0	28
108	Neural circuitry and immunity. Immunologic Research, 2015, 63, 38-57.	2.9	204

#	Article	IF	CITATIONS
109	HMGB1-Driven Inflammation and Intimal Hyperplasia After Arterial Injury Involves Cell-Specific Actions Mediated by TLR4. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2579-2593.	2.4	62
110	Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation. Brain, Behavior, and Immunity, 2015, 44, 19-27.	4.1	64
111	Approaching the Next Revolution? Evolutionary Integration of Neural and Immune Pathogen Sensing and Response: Figure 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a016360.	5.5	19
112	Cholinergic Stimulation Improves Hemostasis in a Hemophilia Mouse Model. Blood, 2015, 126, 3528-3528.	1.4	3
113	Brain Region-Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin-Induced Inflammation. Molecular Medicine, 2014, 20, 601-611.	4.4	79
114	Molecular Medicine Commemorates the Career and Science of Anthony Cerami. Molecular Medicine, 2014, 20, S1-S1.	4.4	0
115	Farewell Statement from Dr. Cerami and Dr. Tracey as Outgoing Co-Editors in Chief of Molecular Medicine. Molecular Medicine, 2014, 20, 329-330.	4.4	0
116	α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release. Molecular Medicine, 2014, 20, 350-358.	4.4	169
117	The Revolutionary Future of Bioelectronic Medicine. Bioelectronic Medicine, 2014, 1, 1-1.	2.3	7
118	Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Review of Clinical Immunology, 2014, 10, 713-727.	3.0	124
119	Expression of Concern: The functions of <scp>HMGB</scp> 1 depend on molecular localization and postâ€ŧranslational modifications. Journal of Internal Medicine, 2014, 276, 420-424.	6.0	80
120	Bacteria and the Neural Code. New England Journal of Medicine, 2014, 371, 2131-2133.	27.0	12
121	Lymphocyte called home: β2-adreneric neurotransmission confines T cells to lymph nodes to suppress inflammation. Journal of Experimental Medicine, 2014, 211, 2483-2484.	8.5	8
122	Intracellular Hmgb1 Inhibits Inflammatory Nucleosome Release and Limits Acute Pancreatitis in Mice. Gastroenterology, 2014, 146, 1097-1107.e8.	1.3	200
123	Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunology, 2014, 7, 335-347.	6.0	170
124	Regulating innate immunity with dopamine and electroacupuncture. Nature Medicine, 2014, 20, 239-241.	30.7	38
125	Sepsis: Current Dogma and New Perspectives. Immunity, 2014, 40, 463-475.	14.3	533
126	A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut, 2014, 63, 938-948.	12.1	332

#	Article	IF	CITATIONS
127	Hypertension: An Immune Disorder?. Immunity, 2014, 41, 673-674.	14.3	8
128	JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3068-3073.	7.1	300
129	HMGB1 Enhances Immune Suppression by Facilitating the Differentiation and Suppressive Activity of Myeloid-Derived Suppressor Cells. Cancer Research, 2014, 74, 5723-5733.	0.9	189
130	A Systematic Nomenclature for the Redox States of High Mobility Group Box (HMGB) Proteins. Molecular Medicine, 2014, 20, 135-137.	4.4	94
131	High-mobility Group Box 1 Protein Initiates Postoperative Cognitive Decline by Engaging Bone Marrow–derived Macrophages. Anesthesiology, 2014, 120, 1160-1167.	2.5	132
132	Sequestering HMGB1 via DNA-Conjugated Beads Ameliorates Murine Colitis. PLoS ONE, 2014, 9, e103992.	2.5	24
133	Central Muscarinic Cholinergic Activation Alters Interaction between Splenic Dendritic Cell and CD4+CD25- T Cells in Experimental Colitis. PLoS ONE, 2014, 9, e109272.	2.5	80
134	All-Thiol HMGB1 Is a Critical Inducer of Anemia in Sepsis Survivors through CXCR4 Signaling. Blood, 2014, 124, 2672-2672.	1.4	0
135	Expression of Concern: <scp>HMGB</scp> 1 mediates splenomegaly and expansion of splenic <scp>CD</scp> 11b+ <scp>L</scp> yâ€6 <scp>C</scp> ^{high} inflammatory monocytes in murine sepsis survivors. Journal of Internal Medicine, 2013, 274, 381-390.	6.0	74
136	Systemic release of high mobility group box 1 (HMGB1) protein is associated with severe and fatal Plasmodium falciparum malaria. Malaria Journal, 2013, 12, 105.	2.3	35
137	Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nature Medicine, 2013, 19, 1489-1495.	30.7	322
138	High-mobility group box 1 and the receptor for advanced glycation end products contribute to lung injury during Staphylococcus aureus pneumonia. Critical Care, 2013, 17, R296.	5.8	43
139	Sepsis definitions – Authors'reply. Lancet, The, 2013, 381, 2250.	13.7	5
140	The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. Journal of Leukocyte Biology, 2013, 93, 865-873.	3.3	449
141	Regulation of HMCB1 release by inflammasomes. Protein and Cell, 2013, 4, 163-167.	11.0	144
142	Sepsis definitions: time for change. Lancet, The, 2013, 381, 774-775.	13.7	579
143	A jump-start for electroceuticals. Nature, 2013, 496, 159-161.	27.8	523
144	High Mobility Group Box–1 Mediates Hyperoxia-Induced Impairment of <i>Pseudomonas aeruginosa</i> Clearance and Inflammatory Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 280-287.	2.9	71

#	Article	IF	CITATIONS
145	High-Mobility Group Box 1 Mediates Persistent Splenocyte Priming in Sepsis Survivors. Shock, 2013, 40, 492-495.	2.1	43
146	Lymphocyte-derived ACh regulates local innate but not adaptive immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1410-1415.	7.1	170
147	Green Tea Catechins Quench the Fluorescence of Bacteria-Conjugated Alexa Fluor Dyes. Inflammation and Allergy: Drug Targets, 2013, 12, 308-314.	1.8	12
148	Editorial. Molecular Medicine, 2013, 19, 333-333.	4.4	1
149	Identification of Pharmacological Modulators of HMGB1-Induced Inflammatory Response by Cell-Based Screening. PLoS ONE, 2013, 8, e65994.	2.5	31
150	HMGB1 Is a Key Modulator Of Stress Erythropoiesis During Sepsis. Blood, 2013, 122, 8-8.	1.4	5
151	Identification of Hemopexin as an Anti-Inflammatory Factor That Inhibits Synergy of Hemoglobin with HMCB1 in Sterile and Infectious Inflammation. Journal of Immunology, 2012, 189, 2017-2022.	0.8	80
152	The pro-inflammatory effect of HMGB1, a mediator of inflammation in arthritis, is dependent on the redox status of the protein. Annals of the Rheumatic Diseases, 2012, 71, A81.2-A82.	0.9	1
153	Redox Modification of Cysteine Residues Regulates the Cytokine Activity of High Mobility Group Box-1 (HMGB1). Molecular Medicine, 2012, 18, 250-259.	4.4	378
154	The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nature Reviews Endocrinology, 2012, 8, 743-754.	9.6	635
155	Neural reflexes in inflammation and immunity. Journal of Experimental Medicine, 2012, 209, 1057-1068.	8.5	308
156	Alarmins: awaiting a clinical response. Journal of Clinical Investigation, 2012, 122, 2711-2719.	8.2	408
157	Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. Journal of Experimental Medicine, 2012, 209, 1519-1528.	8.5	590
158	α7 Nicotinic Acetylcholine Receptor (α7nAChR) Expression in Bone Marrow-Derived Non-T Cells Is Required for the Inflammatory Reflex. Molecular Medicine, 2012, 18, 539-543.	4.4	133
159	Neural Signaling in the Spleen Controls B-Cell Responses to Blood-Borne Antigen. Molecular Medicine, 2012, 18, 618-627.	4.4	62
160	Immune Cells Exploit a Neural Circuit to Enter the CNS. Cell, 2012, 148, 392-394.	28.9	34
161	Tanshinone IIA sodium sulfonate facilitates endocytic HMGB1 uptake. Biochemical Pharmacology, 2012, 84, 1492-1500.	4.4	48
162	RAGE Does Not Contribute to Renal Injury and Damage upon Ischemia/Reperfusion-Induced Injury. Journal of Innate Immunity, 2012, 4, 80-85.	3.8	22

#	Article	IF	CITATIONS
163	Renal expression and serum levels of high mobility group box 1 protein in lupus nephritis. Arthritis Research and Therapy, 2012, 14, R36.	3.5	64
164	Response to "HMGB1 Mediates Cognitive Impairment in Sepsis Survivors― Molecular Medicine, 2012, 18, 1359-1359.	4.4	1
165	Inhibition of High-Mobility Group Box 1 Protein (HMGB1) Enhances Bacterial Clearance and Protects against Pseudomonas Aeruginosa Pneumonia in Cystic Fibrosis. Molecular Medicine, 2012, 18, 477-485.	4.4	94
166	Identification of Pigment Epithelium-Derived Factor as an Adipocyte-Derived Inflammatory Factor. Molecular Medicine, 2012, 18, 1161-1168.	4.4	42
167	HMCB1 Mediates Cognitive Impairment in Sepsis Survivors. Molecular Medicine, 2012, 18, 930-937.	4.4	172
168	Reflex Principles of Immunological Homeostasis. Annual Review of Immunology, 2012, 30, 313-335.	21.8	348
169	Novel role of PKR in inflammasome activation and HMGB1 release. Nature, 2012, 488, 670-674.	27.8	672
170	Rethinking inflammation: neural circuits in the regulation of immunity. Immunological Reviews, 2012, 248, 188-204.	6.0	327
171	Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. Journal of General Physiology, 2012, 140, i3-i3.	1.9	0
172	A new approach to rheumatoid arthritis: treating inflammation with computerized nerve stimulation. Cerebrum: the Dana Forum on Brain Science, 2012, 2012, 3.	0.1	8
173	A Hepatic Protein, Fetuin-A, Occupies a Protective Role in Lethal Systemic Inflammation. PLoS ONE, 2011, 6, e16945.	2.5	131
174	HMGB1 Is a Therapeutic Target for Sterile Inflammation and Infection. Annual Review of Immunology, 2011, 29, 139-162.	21.8	1,230
175	Ancient Neurons Regulate Immunity. Science, 2011, 332, 673-674.	12.6	24
176	Mapping the immunological homunculus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3461-3462.	7.1	27
177	Acetylcholine-Synthesizing T Cells Relay Neural Signals in a Vagus Nerve Circuit. Science, 2011, 334, 98-101.	12.6	1,158
178	Galantamine Alleviates Inflammation and Other Obesity-Associated Complications in High-Fat Diet-Fed Mice. Molecular Medicine, 2011, 17, 599-606.	4.4	96
179	High-Mobility Group Box-1 Protein (HMGB1) Is Increased in Antineutrophilic Cytoplasmatic Antibody (ANCA)-Associated Vasculitis with Renal Manifestations. Molecular Medicine, 2011, 17, 29-35.	4.4	53
180	Molecular basis of applied biological therapeutics. Journal of Internal Medicine, 2011, 269, 2-7.	6.0	4

#	Article	IF	CITATIONS
181	The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. Journal of Internal Medicine, 2011, 269, 45-53.	6.0	265
182	EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology, 2011, 81, 1152-1163.	4.4	145
183	It takes guts to grow a brain. BioEssays, 2011, 33, 588-591.	2.5	56
184	Thyroxine is a potential endogenous antagonist of macrophage migration inhibitory factor (MIF) activity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8224-8227.	7.1	41
185	Cardiopulmonary Arrest and Resuscitation Disrupts Cholinergic Anti-Inflammatory Processes: A Role for Cholinergic α7 Nicotinic Receptors. Journal of Neuroscience, 2011, 31, 3446-3452.	3.6	52
186	A Phase I Clinical Trial of Tiopronin, a Putative Neuroprotective Agent, in Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 2010, 67, 182-186.	1.1	10
187	WHAT'S NEW IN SHOCK, MAY 2010?. Shock, 2010, 33, 451-453.	2.1	0
188	Ligands of the receptor for advanced glycation end products, including high-mobility group box 1, limit bacterial dissemination during Escherichia coli peritonitis*. Critical Care Medicine, 2010, 38, 1414-1422.	0.9	23
189	VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE. Shock, 2010, 33, 608-613.	2.1	42
190	Whole blood cytokine attenuation by cholinergic agonists <i>ex vivo</i> and relationship to vagus nerve activity in rheumatoid arthritis. Journal of Internal Medicine, 2010, 268, 94-101.	6.0	78
191	HMCB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene, 2010, 29, 5299-5310.	5.9	421
192	Peripheral Administration of Fetuin-A Attenuates Early Cerebral Ischemic Injury in Rats. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 493-504.	4.3	65
193	Understanding immunity requires more than immunology. Nature Immunology, 2010, 11, 561-564.	14.5	140
194	Oral Activated Charcoal Prevents Experimental Cerebral Malaria in Mice and in a Randomized Controlled Clinical Trial in Man Did Not Interfere with the Pharmacokinetics of Parenteral Artesunate. PLoS ONE, 2010, 5, e9867.	2.5	11
195	A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11942-11947.	7.1	705
196	Targeting HMGB1 in inflammation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 149-156.	1.9	300
197	Intrathecal injection of an alpha seven nicotinic acetylcholine receptor agonist attenuates gp120-induced mechanical allodynia and spinal pro-inflammatory cytokine profiles in rats. Brain, Behavior, and Immunity, 2010, 24, 959-967.	4.1	44
198	Inflammasome-Dependent Release of the Alarmin HMGB1 in Endotoxemia. Journal of Immunology, 2010, 185, 4385-4392.	0.8	397

#	Article	IF	CITATIONS
199	Endogenous HMGB1 regulates autophagy. Journal of Cell Biology, 2010, 190, 881-892.	5.2	819
200	Cifted hands. Journal of Clinical Investigation, 2010, 120, 1790-1790.	8.2	0
201	Endogenous HMGB1 regulates autophagy. Journal of Experimental Medicine, 2010, 207, i27-i27.	8.5	0
202	Spermine Protects Mice Against Lethal Sepsis Partly by Attenuating Surrogate Inflammatory Markers. Molecular Medicine, 2009, 15, 275-282.	4.4	91
203	The Selective α7 Agonist GTS-21 Attenuates Cytokine Production in Human Whole Blood and Human Monocytes Activated by Ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Molecular Medicine, 2009, 15, 195-202.	4.4	175
204	Cholinergic Neural Signals to the Spleen Down-Regulate Leukocyte Trafficking via CD11b. Journal of Immunology, 2009, 183, 552-559.	0.8	106
205	Immature Dendritic Cell-Derived Exosomes Rescue Septic Animals Via Milk Fat Globule Epidermal Growth Factor VIII. Journal of Immunology, 2009, 183, 5983-5990.	0.8	99
206	ROLE OF TOLL-LIKE RECEPTORS 2 AND 4, AND THE RECEPTOR FOR ADVANCED GLYCATION END PRODUCTS IN HIGH-MOBILITY GROUP BOX 1-INDUCED INFLAMMATION IN VIVO. Shock, 2009, 31, 280-284.	2.1	237
207	Receptor for advanced glycation end products is detrimental during influenza A virus pneumonia. Virology, 2009, 391, 265-273.	2.4	75
208	Introduction: The first Merinoff Symposium, â€~Systemic Lupus: Bringing Science to the Patient'. Journal of Internal Medicine, 2009, 265, 622-624.	6.0	0
209	Cholinergic control of inflammation. Journal of Internal Medicine, 2009, 265, 663-679.	6.0	462
210	Reflex control of immunity. Nature Reviews Immunology, 2009, 9, 418-428.	22.7	969
211	The Inflammatory Reflex and the Role of Complementary and Alternative Medical Therapies. Annals of the New York Academy of Sciences, 2009, 1172, 172-180.	3.8	109
212	Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain, Behavior, and Immunity, 2009, 23, 41-45.	4.1	378
213	The Neurology of the Immune System: Neural Reflexes Regulate Immunity. Neuron, 2009, 64, 28-32.	8.1	200
214	HMGB1 is a boneâ€active cytokine. Journal of Cellular Physiology, 2008, 214, 730-739.	4.1	95
215	Spinal p38 MAP kinase regulates peripheral cholinergic outflow. Arthritis and Rheumatism, 2008, 58, 2919-2921.	6.7	42
216	Acetylcholine regulation of synoviocyte cytokine expression by the α7 nicotinic receptor. Arthritis and Rheumatism, 2008, 58, 3439-3449.	6.7	93

#	Article	IF	CITATIONS
217	Experimental Therapeutic Strategies for Severe Sepsis. Annals of the New York Academy of Sciences, 2008, 1144, 210-236.	3.8	63
218	Cholinergic agonists attenuate renal ischemia–reperfusion injury in rats. Kidney International, 2008, 74, 62-69.	5.2	124
219	The HMGB1 Receptor RAGE Mediates Ischemic Brain Damage. Journal of Neuroscience, 2008, 28, 12023-12031.	3.6	362
220	Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11008-11013.	7.1	659
221	From CNI-1493 to the immunological homunculus: physiology of the inflammatory reflex. Journal of Leukocyte Biology, 2008, 83, 512-517.	3.3	56
222	Splenectomy Protects against Sepsis Lethality and Reduces Serum HMGB1 Levels. Journal of Immunology, 2008, 181, 3535-3539.	0.8	84
223	Modulation of TNF Release by Choline Requires α7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling. Molecular Medicine, 2008, 14, 567-574.	4.4	288
224	High Mobility Group Box Protein-1 Correlates with Renal Function in Chronic Kidney Disease (CKD). Molecular Medicine, 2008, 14, 109-115.	4.4	92
225	Hemorrhagic Shock Induces NAD(P)H Oxidase Activation in Neutrophils: Role of HMCB1-TLR4 Signaling. Journal of Immunology, 2007, 178, 6573-6580.	0.8	268
226	IL-1α and IL-1β Are Endogenous Mediators Linking Cell Injury to the Adaptive Alloimmune Response. Journal of Immunology, 2007, 179, 6536-6546.	0.8	83
227	Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis*. Critical Care Medicine, 2007, 35, 2762-2768.	0.9	216
228	A Cardiovascular Drug Rescues Mice from Lethal Sepsis by Selectively Attenuating a Late-Acting Proinflammatory Mediator, High Mobility Group Box 1. Journal of Immunology, 2007, 178, 3856-3864.	0.8	160
229	Systemic inflammation and remote organ injury following trauma require HMGB1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1538-R1544.	1.8	199
230	Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis*. Critical Care Medicine, 2007, 35, 1139-1144.	0.9	352
231	Aerobic exercise attenuates inducible TNF production in humans. Journal of Applied Physiology, 2007, 103, 1007-1011.	2.5	83
232	Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis*. Critical Care Medicine, 2007, 35, 1061-1067.	0.9	209
233	Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H503-H509.	3.2	134
234	High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. Journal of Leukocyte Biology, 2007, 81, 59-66.	3.3	336

#	Article	IF	CITATIONS
235	Cholinergic Regulation of Inflammation. , 2007, , 85-96.		10
236	Brain Endothelial Cells Bridge Neural and Immune Networks. , 2007, , 1140-1153.		0
237	Physiology and immunology of the cholinergic antiinflammatory pathway. Journal of Clinical Investigation, 2007, 117, 289-296.	8.2	1,274
238	Cholinergic Anti-Inflammatory Pathway Activity and High Mobility Group Box-1 (HMGB1) Serum Levels in Patients with Rheumatoid Arthritis. Molecular Medicine, 2007, 13, 210-215.	4.4	162
239	RR Interval Variability Is Inversely Related to Inflammatory Markers: The CARDIA Study. Molecular Medicine, 2007, 13, 178-184.	4.4	220
240	Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis *. Critical Care Medicine, 2007, 35, 2762-2768.	0.9	211
241	HMGB1 Expression in Sickle Cell Disease: A Pro-Inflammatory Cytokine and Potential Therapeutic Target Blood, 2007, 110, 3803-3803.	1.4	0
242	HMGB1 as a potential therapeutic target. Novartis Foundation Symposium, 2007, 280, 73-85; discussion 85-91, 160-4.	1.1	22
243	The Vagus Nerve and Nicotinic Receptors Modulate Experimental Pancreatitis Severity in Mice. Gastroenterology, 2006, 130, 1822-1830.	1.3	431
244	Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. Journal of Experimental Medicine, 2006, 203, 1623-1628.	8.5	630
245	HMGB1 activates replication of latent HIV-1 in a monocytic cell-line, but inhibits HIV-1 replication in primary macrophages. Cytokine, 2006, 34, 17-23.	3.2	36
246	Anti-HMGB1 Neutralizing Antibody Ameliorates Gut Barrier Dysfunction and Improves Survival after Hemorrhagic Shock. Molecular Medicine, 2006, 12, 105-114.	4.4	219
247	The Aqueous Extract of a Popular Herbal Nutrient Supplement, Angelica sinensis, Protects Mice against Lethal Endotoxemia and Sepsis. Journal of Nutrition, 2006, 136, 360-365.	2.9	80
248	Controlling inflammation: the cholinergic anti-inflammatory pathway. Biochemical Society Transactions, 2006, 34, 1037-1040.	3.4	190
249	HMGB1 SIGNALS THROUGH TOLL-LIKE RECEPTOR (TLR) 4 AND TLR2. Shock, 2006, 26, 174-179.	2.1	730
250	ELEVATED HIGH-MOBILITY GROUP BOX 1 LEVELS IN PATIENTS WITH CEREBRAL AND MYOCARDIAL ISCHEMIA. Shock, 2006, 25, 571-574.	2.1	226
251	A Novel Inhibitor Of Inflammatory Cytokine Production (CNI-1493) Reduces Rodent Post-Hemorrhagic Vasospasm. Neurocritical Care, 2006, 5, 222-229.	2.4	34
252	Role of HMGB1 in apoptosis-mediated sepsis lethality. Journal of Experimental Medicine, 2006, 203, 1637-1642.	8.5	359

#	Article	IF	CITATIONS
253	High Mobility Group B1 Protein Suppresses the Human Plasmacytoid Dendritic Cell Response to TLR9 Agonists. Journal of Immunology, 2006, 177, 8701-8707.	0.8	59
254	Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5219-5223.	7.1	295
255	Dendritic cell activating peptides induce distinct cytokine profiles. International Immunology, 2006, 18, 1563-1573.	4.0	48
256	Cutting Edge: High-Mobility Group Box 1 Preconditioning Protects against Liver Ischemia-Reperfusion Injury. Journal of Immunology, 2006, 176, 7154-7158.	0.8	113
257	Vagus Nerve Stimulation Attenuates Peripheral Hemorrhage In Rodents And Swine. FASEB Journal, 2006, 20, A1422.	0.5	0
258	Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. Journal of Cell Biology, 2006, 174, i1-i1.	5.2	0
259	Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock*. Critical Care Medicine, 2005, 33, 564-573.	0.9	399
260	High mobility group box 1 (HMGB1). Critical Care Medicine, 2005, 33, S472-S474.	0.9	38
261	Adrenomedullin and its binding protein attenuate the proinflammatory response after hemorrhage. Critical Care Medicine, 2005, 33, 391-398.	0.9	33
262	Immunologic Role of the Cholinergic Antiâ€Inflammatory Pathway and the Nicotinic Acetylcholine α7 Receptor. Annals of the New York Academy of Sciences, 2005, 1062, 209-219.	3.8	101
263	Autonomic neural regulation of immunity. Journal of Internal Medicine, 2005, 257, 156-166.	6.0	252
264	It takes nerve to dampen inflammation. Nature Immunology, 2005, 6, 756-757.	14.5	84
265	High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology, 2005, 5, 331-342.	22.7	2,218
266	High-mobility group box 1 protein is an inflammatory mediator in necrotizing enterocolitis: protective effect of the macrophage deactivator semapimod. American Journal of Physiology - Renal Physiology, 2005, 289, G643-G652.	3.4	51
267	α-Chemokine receptor blockade reduces high mobility group box 1 protein-induced lung inflammation and injury and improves survival in sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L583-L590.	2.9	69
268	Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. Journal of Lipid Research, 2005, 46, 623-627.	4.2	113
269	Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. Journal of Experimental Medicine, 2005, 201, 1113-1123.	8.5	444
270	The Cholinergic Antiâ€Inflammatory Pathway Regulates the Host Response during Septic Peritonitis. Journal of Infectious Diseases, 2005, 191, 2138-2148.	4.0	358

#	Article	lF	CITATIONS
271	The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. Journal of Experimental Medicine, 2005, 201, 1135-1143.	8.5	1,634
272	Suppressor Î \pm Î ² T Lymphocytes Control Innate Resistance to Endotoxic Shock. Journal of Infectious Diseases, 2005, 192, 1039-1046.	4.0	6
273	The effects of CpG DNA on HMGB1 release by murine macrophage cell lines. Journal of Leukocyte Biology, 2005, 78, 930-936.	3.3	46
274	Fat meets the cholinergic antiinflammatory pathway. Journal of Experimental Medicine, 2005, 202, 1017-1021.	8.5	56
275	The cholinergic anti-inflammatory pathway. Brain, Behavior, and Immunity, 2005, 19, 493-499.	4.1	472
276	ISO-1 Binding to the Tautomerase Active Site of MIF Inhibits Its Pro-inflammatory Activity and Increases Survival in Severe Sepsis. Journal of Biological Chemistry, 2005, 280, 36541-36544.	3.4	264
277	The cytokine activity of HMGB1. Journal of Leukocyte Biology, 2005, 78, 1-8.	3.3	470
278	The â€~cytokine profile': a code for sepsis. Trends in Molecular Medicine, 2005, 11, 56-63.	6.7	1,066
279	Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proceedings of the United States of America, 2004, 101, 296-301.	7.1	1,085
280	Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. Journal of Leukocyte Biology, 2004, 76, 994-1001.	3.3	174
281	Ethanol Blocks Leukocyte Recruitment and Endothelial Cell Activation In Vivo and In Vitro. Journal of Immunology, 2004, 173, 6376-6383.	0.8	79
282	Network of Dynamic Interactions between Histone H1 and High-Mobility-Group Proteins in Chromatin. Molecular and Cellular Biology, 2004, 24, 4321-4328.	2.3	239
283	High Mobility Group Box Protein 1: An Endogenous Signal for Dendritic Cell Maturation and Th1 Polarization. Journal of Immunology, 2004, 173, 307-313.	0.8	403
284	Extracellular role of HMGB1 in inflammation and sepsis. Journal of Internal Medicine, 2004, 255, 320-331.	6.0	436
285	HMGB1, a pro-inflammatory cytokine of clinical interest: introduction. Journal of Internal Medicine, 2004, 255, 318-319.	6.0	31
286	Activation of Human Umbilical Vein Endothelial Cells Leads to Relocation and Release of Highâ€Mobility Group Box Chromosomal Protein 1. Scandinavian Journal of Immunology, 2004, 60, 566-573.	2.7	141
287	Lipid unites disparate syndromes of sepsis. Nature Medicine, 2004, 10, 124-125.	30.7	50
288	Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine, 2004, 10, 1216-1221.	30.7	1,624

#	Article	IF	CITATIONS
289	An inflammatory issue. Nature, 2004, 429, 35-37.	27.8	17
290	Recombinant HMGB1 with cytokine-stimulating activity. Journal of Immunological Methods, 2004, 289, 211-223.	1.4	135
291	HMGB1 as a mediator of necrosis-induced inflammation and a therapeutic target in arthritis. Rheumatic Disease Clinics of North America, 2004, 30, 627-637.	1.9	49
292	Pathogenic role of HMGB1 in SARS?. Medical Hypotheses, 2004, 63, 691-695.	1.5	33
293	HMGB1 in the Immunology of Sepsis (Not Septic Shock) and Arthritis. Advances in Immunology, 2004, 84, 181-200.	2.2	49
294	Intracellular high mobility group B1 protein (HMGB1) represses HIV-1 LTR-directed transcription in a promoter- and cell-specific manner. Virology, 2003, 314, 179-189.	2.4	40
295	High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis and Rheumatism, 2003, 48, 876-881.	6.7	82
296	High mobility group 1 B-box mediates activation of human endothelium. Journal of Internal Medicine, 2003, 254, 375-385.	6.0	297
297	Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature, 2003, 421, 384-388.	27.8	3,346
298	Ethyl Pyruvate Protects against Lethal Systemic Inflammation by Preventing HMGB1 Release. Annals of the New York Academy of Sciences, 2003, 987, 319-321.	3.8	25
299	Activation of gene expression in human neutrophils by high mobility group box 1 protein. American Journal of Physiology - Cell Physiology, 2003, 284, C870-C879.	4.6	390
300	Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects. Cytokine, 2003, 24, 254-265.	3.2	129
301	HMGB1 in Sepsis. Scandinavian Journal of Infectious Diseases, 2003, 35, 577-584.	1.5	97
302	IFN-γ Induces High Mobility Group Box 1 Protein Release Partly Through a TNF-Dependent Mechanism. Journal of Immunology, 2003, 170, 3890-3897.	0.8	304
303	High Mobility Group Box–1 as a Therapeutic Target Downstream of Tumor Necrosis Factor. Journal of Infectious Diseases, 2003, 187, S391-S396.	4.0	59
304	Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. Journal of Endotoxin Research, 2003, 9, 409-413.	2.5	39
305	Future Research Directions in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1027-1035.	5.6	489
306	Targeting high mobility group box 1 as a late-acting mediator of inflammation. Critical Care Medicine, 2003, 31, S46-S50.	0.9	55

#	Article	IF	CITATIONS
307	The gesture life of high mobility group box 1. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 283-287.	2.5	6
308	3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochemical Journal, 2003, 371, 429-436.	3.7	61
309	Structural Basis for the Proinflammatory Cytokine Activity of High Mobility Group Box 1. Molecular Medicine, 2003, 9, 37-45.	4.4	295
310	The Cholinergic Anti-inflammatory Pathway: A Missing Link in Neuroimmunomodulation. Molecular Medicine, 2003, 9, 125-134.	4.4	566
311	Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Molecular Medicine, 2003, 9, 37-45.	4.4	148
312	The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Molecular Medicine, 2003, 9, 125-34.	4.4	241
313	Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12351-12356.	7.1	574
314	Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5579-5584.	7.1	75
315	Pharmacological Stimulation of the Cholinergic Antiinflammatory Pathway. Journal of Experimental Medicine, 2002, 195, 781-788.	8.5	474
316	Globin Attenuates the Innate Immune Response to Endotoxin. Shock, 2002, 17, 485-490.	2.1	32
317	HMGB-1, A DNA-BINDING PROTEIN WITH CYTOKINE ACTIVITY, INDUCES BRAIN TNF AND IL-6 PRODUCTION, AND MEDIATES ANOREXIA AND TASTE AVERSION. Cytokine, 2002, 18, 231-236.	3.2	143
318	HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology, 2002, 123, 790-802.	1.3	337
319	Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. Journal of Vascular Surgery, 2002, 36, 1231-1236.	1.1	197
320	Is Severe Sepsis a Neuroendocrine Disease?. Molecular Medicine, 2002, 8, 437-442.	4.4	36
321	High mobility group box chromosomal protein 1: A novel proinflammatory mediator in synovitis. Arthritis and Rheumatism, 2002, 46, 2598-2603.	6.7	261
322	The inflammatory reflex. Nature, 2002, 420, 853-859.	27.8	3,111
323	HMGB1 as a cytokine and therapeutic target. Journal of Endotoxin Research, 2002, 8, 469-472.	2.5	114
324	Is severe sepsis a neuroendocrine disease?. Molecular Medicine, 2002, 8, 437-42.	4.4	11

#	Article	IF	CITATIONS
325	HMGB1 as a DNA-binding cytokine. Journal of Leukocyte Biology, 2002, 72, 1084-91.	3.3	215
326	Systemic administration of CNI-1493, a p38 mitogen-activated protein kinase inhibitor, blocks intrathecal human immunodeficiency virus-1 gp120-induced enhanced pain states in rats. Journal of Pain, 2001, 2, 326-333.	1.4	38
327	Dual roles for HMGB1: DNA binding and cytokine. Journal of Endotoxin Research, 2001, 7, 315-321.	2.5	103
328	Dynamics of Early Synovial Cytokine Expression in Rodent Collagen-Induced Arthritis. American Journal of Pathology, 2001, 158, 491-500.	3.8	39
329	A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain, 2001, 94, 231-244.	4.2	283
330	FETUIN, A NEGATIVE ACUTE PHASE PROTEIN, ATTENUATES TNF SYNTHESIS AND THE INNATE INFLAMMATORY RESPONSE TO CARRAGEENAN. Shock, 2001, 15, 181-185.	2.1	120
331	HMG-1 REDISCOVERED AS A CYTOKINE. Shock, 2001, 15, 247-253.	2.1	136
332	Mind over immunity. FASEB Journal, 2001, 15, 1575-1576.	0.5	75
333	Coagulation and inflammation. Journal of Endotoxin Research, 2001, 7, 315-321.	2.5	5
334	Research Methods in Neurosurgery. , 2001, , 1095-1105.		0
335	Inhibition of p38 mitogen activate kinase attenuates the severity of pancreatitis-induced adult respiratory distress syndrome. Critical Care Medicine, 2000, 28, 2567-2572.	0.9	60
336	Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, 405, 458-462.	27.8	3,524
337	3-aminopropanal in the pathogenesis of ischemia. Journal of the American College of Surgeons, 2000, 191, S3-S4.	0.5	0
338	Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Research, 2000, 861, 105-116.	2.2	252
339	Regulation of macrophage activation and inflammation by spermine: A new chapter in an old story. Critical Care Medicine, 2000, 28, N60-N66.	0.9	126
340	High Mobility Group 1 Protein (Hmg-1) Stimulates Proinflammatory Cytokine Synthesis in Human Monocytes. Journal of Experimental Medicine, 2000, 192, 565-570.	8.5	1,306
341	Cutting Edge: HMG-1 as a Mediator of Acute Lung Inflammation. Journal of Immunology, 2000, 165, 2950-2954.	0.8	704
342	Suppression of Macrophage Activation with CNI-1493 Increases Survival in Infant Rats with Systemic Haemophilus influenzae Infection. Infection and Immunity, 2000, 68, 5329-5334.	2.2	12

#	Article	IF	CITATIONS
343	Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Autonomic Neuroscience: Basic and Clinical, 2000, 85, 141-147.	2.8	273
344	Spermine Inhibition of Monocyte Activation and Inflammation. Molecular Medicine, 1999, 5, 595-605.	4.4	81
345	Prevention of Lethality and Suppression of Proinflammatory Cytokines in Experimental Septic Shock by Microencapsulated CNI-1493. Journal of Interferon and Cytokine Research, 1999, 19, 1125-1133.	1.2	25
346	Role of Interleukin (IL)-2 Receptor β-Chain Subdomains and Shc in p38 Mitogen-activated Protein (MAP) Kinase and p54 MAP Kinase (Stress-activated Protein Kinase/c-Jun N-terminal Kinase) Activation. Journal of Biological Chemistry, 1999, 274, 7591-7597.	3.4	32
347	Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-α) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats. Clinical and Experimental Immunology, 1999, 115, 32-41.	2.6	46
348	HMG-1 as a Late Mediator of Endotoxin Lethality in Mice. Science, 1999, 285, 248-251.	12.6	3,807
349	Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet, The, 1999, 354, 1446-1447.	13.7	170
350	Evidence of a central role for p38 map kinase induction of tumor necrosis factor \hat{I}_{\pm} in pancreatitis-associated pulmonary injury. Surgery, 1999, 126, 216-222.	1.9	56
351	Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery, 1999, 126, 389-392.	1.9	282
352	FROM MOUSE TO MAN. Shock, 1999, 11, 224-225.	2.1	31
353	Tolerance to Shock: An Exploration of Mechanism. Annals of Surgery, 1999, 229, 843.	4.2	23
354	Macrophage pacification reduces rodent pancreatitis-induced hepatocellular injury through down-regulation of hepatic tumor necrosis factor ? and interleukin-1?. Hepatology, 1998, 28, 1282-1288.	7.3	40
355	Specific Inhibition of Macrophage-Derived Proinflammatory Cytokine Synthesis With a Tetravalent Guanylhydrazone CNI-1493 Accelerates Early Islet Graft Function Posttransplant. Transplantation Proceedings, 1998, 30, 409-410.	0.6	10
356	THE PHYSIOLOGIC CONSEQUENCES OF MACROPHAGE PACIFICATION DURING SEVERE ACUTE PANCREATITIS. Shock, 1998, 10, 169-175.	2.1	50
357	The tetravalent guanylhydrazone CNI-1493 blocks the toxic effects of interleukin-2 without diminishing antitumor efficacy. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4561-4566.	7.1	19
358	CNI-1493 ATTENUATES HEMODYNAMIC AND PRO-INFLAMMATORY RESPONSES TO LPS. Shock, 1998, 10, 329-334.	2.1	13
359	HYPOPHYSECTOMY, HIGH TUMOR NECROSIS FACTOR LEVELS, AND HEMOGLOBINEMIA IN LETHAL ENDOTOXEMIC SHOCK. Shock, 1998, 10, 395-400.	2.1	18
360	Cerebral Ischemia Enhances Polyamine Oxidation: Identification of Enzymatically Formed 3-Aminopropanal as an Endogenous Mediator of Neuronal and Glial Cell Death. Journal of Experimental Medicine, 1998, 188, 327-340.	8.5	110

#	Article	IF	CITATIONS
361	CNI-1493 Prolongs Survival and Reduces Myocyte Loss, Apoptosis, and Inflammation During Rat Cardiac Allograft Rejection. Journal of Cardiovascular Pharmacology, 1998, 32, 146-155.	1.9	14
362	Spermine Inhibits Proinflammatory Cytokine Synthesis in Human Mononuclear Cells: A Counterregulatory Mechanism that Restrains the Immune Response. Journal of Experimental Medicine, 1997, 185, 1759-1768.	8.5	288
363	TUMOR NECROSIS FACTOR IS A BRAIN DAMAGING CYTOKINE IN CEREBRAL ISCHEMIA. Shock, 1997, 8, 141-348.	2.1	121
364	Subacute Paraparesis Induced by Venous Thrombosis of a Spinal Angiolipoma. Spine, 1997, 22, 2304-2308.	2.0	26
365	Fetuin protects the fetus from TNF. Lancet, The, 1997, 350, 861-862.	13.7	69
366	Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain, 1997, 71, 225-235.	4.2	313
367	Expression of TNF and TNF Receptors (p55 and p75) in the Rat Brain after Focal Cerebral Ischemia. Molecular Medicine, 1997, 3, 765-781.	4.4	250
368	Lipopolysaccharide-Induced Cytokine Cascade and Lethality in LTα/TNFα-Deficient Mice. Molecular Medicine, 1997, 3, 864-875.	4.4	73
369	The Critical Role of p38 MAP Kinase in T Cell HIV-1 Replication. Molecular Medicine, 1997, 3, 339-346.	4.4	100
370	CNI-1493 inhibits monocyte/macrophage tumor necrosis factor by suppression of translation efficiency Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3967-3971.	7.1	101
371	High-performance liquid chromatographic method for guanylhydrazone compounds. Biomedical Applications, 1996, 675, 71-75.	1.7	7
372	Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone Journal of Experimental Medicine, 1996, 183, 927-936.	8.5	130
373	Cerebroprotective Effects of Aminoguanidine in a Rodent Model of Stroke. Stroke, 1996, 27, 1393-1398.	2.0	76
374	An Inhibitor of Macrophage Arginine Transport and Nitric Oxide Production (CNI-1493) Prevents Acute Inflammation and Endotoxin Lethality. Molecular Medicine, 1995, 1, 254-266.	4.4	119
375	TUMOR NECROSIS FACTOR: A Pleiotropic Cytokine and Therapuetic Target. Annual Review of Medicine, 1994, 45, 491-503.	12.2	975
376	The Neuroimmunology of Tumour Necrosis Factor-α. BioDrugs, 1994, 1, 67-78.	0.7	5
377	Tumor Necrosis Factor, Other Cytokines and Disease. Annual Review of Cell Biology, 1993, 9, 317-343.	26.1	736
378	Tumor Necrosis Factor and Regulation of Metabolism in Infection: Role of Systemic versus Tissue Levels. Experimental Biology and Medicine, 1992, 200, 233-239.	2.4	73

#	Article	IF	CITATIONS
379	Tumour necrosis factor Î \pm (TNF) in neuroimmunology. Advances in Neuroimmunology, 1992, 2, 125-138.	1.8	7
380	Tumor Necrosis Factor in the Malnutrition (Cachexia) of Infection and Cancer. American Journal of Tropical Medicine and Hygiene, 1992, 47, 2-7.	1.4	37
381	Cachectin–TNF in the Biology of Disease. , 1991, , 125-136.		1
382	Metabolic Responses to Cachectin/TNF. Annals of the New York Academy of Sciences, 1990, 587, 325-331.	3.8	107
383	Cytokine production in a model of wound healing: The appearance of MIP-1, MIP-2, cachectin/TNF and IL-I. Cytokine, 1990, 2, 92-99.	3.2	126
384	Intravenous Refeeding Blocks Growth Hormone (GH)-Provoked Rises in Serum Free Fatty Acids and Blunting of Somatotroph Response to GH-Releasing Hormone in Normal Men*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 310-316.	3.6	7
385	Cachectin/tumor necrosis factor and other cytokines in infectious disease. Current Opinion in Immunology, 1989, 1, 454-461.	5.5	64
386	Studies of Cachexia in Parasitic Infection. Annals of the New York Academy of Sciences, 1989, 569, 211-218.	3.8	10
387	Peripheral Blood Leukocyte Kinetics Following In Vivo Lipopolysaccharide (LPS) Administration to Normal Human Subjects. Annals of Surgery, 1989, 210, 239-245.	4.2	111
388	Exercise-Mediated Peripheral Tissue and Whole-Body Amino Acid Metabolism during Intravenous Feeding in Normal Man. Clinical Science, 1989, 77, 113-120.	4.3	16
389	Preservation of functional aerobic capacity with daily submaximal exercise during intravenous feeding in hospitalized normal man. World Journal of Surgery, 1988, 12, 123-130.	1.6	4
390	Influence of substrate background on peripheral tissue responses to growth hormone. Journal of Surgical Research, 1988, 44, 702-708.	1.6	18
391	Effect of Starvation and Total Parenteral Nutrition on Electrolyte Homeostasis in Normal Man. Journal of Parenteral and Enteral Nutrition, 1988, 12, 109-115.	2.6	5
392	Submaximal Exercise During Intravenous Hyperalimentation of Depleted Subjects. Annals of Surgery, 1988, 207, 297-304.	4.2	9
393	Protein and substrate metabolism during starvation and parenteral refeeding. Clinical Science, 1988, 74, 123-132.	4.3	38
394	Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature, 1987, 330, 662-664.	27.8	2,558
395	Peripheral tissue metabolism in man with varied disease states and similar weight loss. Journal of Surgical Research, 1986, 40, 374-381.	1.6	13
396	Signet ring carcinoma of the pancreas, a rare variant with very high CEA values. Digestive Diseases and Sciences, 1984, 29, 573-576.	2.3	41

#	Article	IF	CITATIONS
397	Radioimmunoassay for methotrexate using hydroxyethylmethacrylate hydrogel. Cancer Chemotherapy and Pharmacology, 1983, 10, 96-99.	2.3	4
398	Introduction: Electronic Medicine in Immunology Special Issue Part 2. International Immunology, 0, , .	4.0	0
399	Neural Regulation of Cytokines. , 0, , 299-313.		0