Paul R. Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8083497/publications.pdf Version: 2024-02-01

DALLI P FICHED

#	Article	lF	CITATIONS
1	Dictyostelium discoideum: A Model System for Neurological Disorders. Cells, 2022, 11, 463.	4.1	6
2	The Dictyostelium Model for Mucolipidosis Type IV. Frontiers in Cell and Developmental Biology, 2022, 10, 741967.	3.7	0
3	Cytopathological Outcomes of Knocking down Expression of Mitochondrial Complex II Subunits in Dictyostelium discoideum. International Journal of Molecular Sciences, 2022, 23, 5039.	4.1	1
4	Dysregulated Gene Expression in Lymphoblasts from Parkinson's Disease. Proteomes, 2022, 10, 20.	3.5	3
5	Could the kynurenine pathway be the key missing piece of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) complex puzzle?. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	8
6	Dysregulated Provision of Oxidisable Substrates to the Mitochondria in ME/CFS Lymphoblasts. International Journal of Molecular Sciences, 2021, 22, 2046.	4.1	24
7	Lymphoblastoid Cell Lines as Models to Study Mitochondrial Function in Neurological Disorders. International Journal of Molecular Sciences, 2021, 22, 4536.	4.1	10
8	The Parkinson's Disease-Associated Protein DJ-1 Protects Dictyostelium Cells from AMPK-Dependent Outcomes of Oxidative Stress. Cells, 2021, 10, 1874.	4.1	8
9	A Conserved Role for LRRK2 and Roco Proteins in the Regulation of Mitochondrial Activity. Frontiers in Cell and Developmental Biology, 2021, 9, 734554.	3.7	6
10	Interactions and Cytotoxicity of Human Neurodegeneration- Associated Proteins Tau and α-Synuclein in the Simple Model Dictyostelium discoideum. Frontiers in Cell and Developmental Biology, 2021, 9, 741662.	3.7	4
11	Relationships between Mitochondrial Function, AMPK, and TORC1 Signaling in Lymphoblasts with Premutation Alleles of the FMR1 Gene. International Journal of Molecular Sciences, 2021, 22, 10393.	4.1	2
12	Chronic Activation of AMPK Induces Mitochondrial Biogenesis through Differential Phosphorylation and Abundance of Mitochondrial Proteins in Dictyostelium discoideum. International Journal of Molecular Sciences, 2021, 22, 11675.	4.1	2
13	Cellular Bioenergetics and AMPK and TORC1 Signalling in Blood Lymphoblasts Are Biomarkers of Clinical Status in FMR1 Premutation Carriers. Frontiers in Psychiatry, 2021, 12, 747268.	2.6	4
14	Misfolded α-synuclein causes hyperactive respiration without functional deficit in live neuroblastoma cells. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	14
15	Cytotoxicity and Mitochondrial Dysregulation Caused by α-Synuclein in Dictyostelium discoideum. Cells, 2020, 9, 2289.	4.1	10
16	An Isolated Complex V Inefficiency and Dysregulated Mitochondrial Function in Immortalized Lymphocytes from ME/CFS Patients. International Journal of Molecular Sciences, 2020, 21, 1074.	4.1	49
17	Biomedical Insights That Inform the Diagnosis of ME/CFS. Diagnostics, 2020, 10, 92.	2.6	4
18	A Dictyostelium discoideum mitochondrial fluorescent tagging vector that does not affect respiratory function. Biochemistry and Biophysics Reports, 2020, 22, 100751.	1.3	1

#	Article	IF	CITATIONS
19	Cell-Based Blood Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. International Journal of Molecular Sciences, 2020, 21, 1142.	4.1	19
20	Tau and its interactions with other proteins in neurodegenerative diseases. , 2020, , 447-462.		1
21	The DJ-1 gene and protein: links with Parkinson's disease. , 2020, , 35-49.		0
22	Mitochondria in Health and Disease. Cells, 2019, 8, 680.	4.1	294
23	Pathological Mechanisms Underlying Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics, 2019, 9, 80.	2.6	50
24	Modelling of Neuronal Ceroid Lipofuscinosis Type 2 in Dictyostelium discoideum Suggests That Cytopathological Outcomes Result from Altered TOR Signalling. Cells, 2019, 8, 469.	4.1	15
25	The Dictyostelium model for mitochondrial biology and disease. International Journal of Developmental Biology, 2019, 63, 497-508.	0.6	18
26	The Spectrum of Neurological and White Matter Changes and Premutation Status Categories of Older Male Carriers of the FMR1 Alleles Are Linked to Genetic (CGG and FMR1 mRNA) and Cellular Stress (AMPK) Markers. Frontiers in Genetics, 2018, 9, 531.	2.3	7
27	Calcineurin Silencing in Dictyostelium discoideum Leads to Cellular Alterations Affecting Mitochondria, Gene Expression, and Oxidative Stress Response. Protist, 2018, 169, 584-602.	1.5	5
28	Mitochondrial HTRA2 Plays a Positive, Protective Role in Dictyostelium discoideum but Is Cytotoxic When Overexpressed. Genes, 2018, 9, 355.	2.4	11
29	Proteobacterial Origin of Protein Arginine Methylation and Regulation of Complex I Assembly by MidA. Cell Reports, 2018, 24, 1996-2004.	6.4	10
30	The Parkinson's disease-associated protein DJ-1 plays a positive nonmitochondrial role in endocytosis in <i>Dictyostelium</i> cells. DMM Disease Models and Mechanisms, 2017, 10, 1261-1271.	2.4	18
31	Novel Blood Biomarkers Are Associated with White Matter Lesions in Fragile X- Associated Tremor/Ataxia Syndrome. Neurodegenerative Diseases, 2017, 17, 22-30.	1.4	19
32	Immortalized Parkinson's Disease lymphocytes have enhanced mitochondrial respiratory activity. DMM Disease Models and Mechanisms, 2016, 9, 1295-1305.	2.4	40
33	Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells. Methods in Molecular Biology, 2016, 1407, 41-61.	0.9	18
34	Emerging Roles of JmjC Domain-Containing Proteins. International Review of Cell and Molecular Biology, 2015, 319, 165-220.	3.2	70
35	AMPK Subcellular Localisation in <i>Dictyostelium discoideum</i> . American Journal of Molecular Biology, 2015, 05, 105-116.	0.3	0
36	An ancestral non-proteolytic role for presenilin proteins in multicellular development of the social amoeba <i>Dictyostelium discoideum</i> . Journal of Cell Science, 2014, 127, 1576-84.	2.0	24

#	Article	IF	CITATIONS
37	Dictyostelium, a microbial model for brain disease. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1413-1432.	2.4	25
38	Stress and development in <i>Dictyostelium discoideum</i> : the involvement of the catalytic calcineurin A subunit. Journal of Basic Microbiology, 2014, 54, 607-613.	3.3	9
39	Analysis of Mitochondrial Gene Expression. Methods in Molecular Biology, 2013, 983, 325-344.	0.9	1
40	Mitochondrial Respiratory Complex Function and the Phenotypic Consequences of Dysfunction. Methods in Molecular Biology, 2013, 983, 345-366.	0.9	3
41	Ndufaf5 deficiency in the <i>Dictyostelium</i> model: new roles in autophagy and development. Molecular Biology of the Cell, 2013, 24, 1519-1528.	2.1	14
42	Mitochondrial Gene Expression and Dysfunction in Model Protozoa. , 2012, , 241-269.		1
43	The millennium bugs. Microbiology Australia, 2012, 33, 119.	0.4	0
44	A Dictyostelium SH2 adaptor protein required for correct DIF-1 signaling and pattern formation. Developmental Biology, 2011, 353, 290-301.	2.0	3
45	The Dictyostelium model for mitochondrial disease. Seminars in Cell and Developmental Biology, 2011, 22, 120-130.	5.0	46
46	Dictyostelium discoideum Nucleoside Diphosphate Kinase C Plays a Negative Regulatory Role in Phagocytosis, Macropinocytosis and Exocytosis. PLoS ONE, 2011, 6, e26024.	2.5	16
47	Heteroplasmic mitochondrial disease in Dictyostelium discoideum. Biochemical Pharmacology, 2011, 82, 1510-1520.	4.4	15
48	A genetic interaction between NDPK and AMPK in Dictyostelium discoideum that affects motility, growth and development. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384, 341-349.	3.0	10
49	The LRRK2-related Roco kinase Roco2 is regulated by Rab1A and controls the actin cytoskeleton. Molecular Biology of the Cell, 2011, 22, 2198-2211.	2.1	17
50	Cell type-specific filamin complex regulation by a novel class of HECT ubiquitin ligase is required for normal cell motility and patterning. Development (Cambridge), 2011, 138, 1583-1593.	2.5	5
51	Cell type-specific filamin complex regulation by a novel class of HECT ubiquitin ligase is required for normal cell motility and patterning. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0
52	Donald Graham MacPhee: In memoriam. Mutation Research - Reviews in Mutation Research, 2010, 705, 2-2.	5.5	2
53	MidA is a putative methyltransferase that is required for mitochondrial complex I function. Journal of Cell Science, 2010, 123, 1674-1683.	2.0	49
54	Cytopathological Mechanisms in Mitochondrial Disease. Current Chemical Biology, 2010, 4, 32-48.	0.5	0

#	Article	IF	CITATIONS
55	Cytopathological Mechanisms in Mitochondrial Disease. Current Chemical Biology, 2010, 4, 32-48.	0.5	3
56	<i>Legionella pneumophila</i> multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. DMM Disease Models and Mechanisms, 2009, 2, 479-489.	2.4	45
57	Transcription of the Dictyostelium discoideum mitochondrial genome occurs from a single initiation site. Rna, 2009, 15, 2321-2330.	3.5	18
58	Dictyostelium discoideum—a model for many reasons. Molecular and Cellular Biochemistry, 2009, 329, 73-91.	3.1	134
59	Chapter 2 Import Of Nuclearâ€Encoded Mitochondrial Proteins. International Review of Cell and Molecular Biology, 2009, 273, 49-68.	3.2	42
60	<i>Legionella pneumophila</i> multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. DMM Disease Models and Mechanisms, 2009, 2, 516-516.	2.4	0
61	In Vivo Measurements of Cytosolic Calcium in Dictyostelium discoideum. Methods in Molecular Biology, 2009, 571, 291-308.	0.9	5
62	Dictyostelium Slug Phototaxis. Methods in Molecular Biology, 2009, 571, 67-76.	0.9	10
63	Purinergic-mediated Ca2+ influx in Dictyostelium discoideum. Cell Calcium, 2008, 44, 567-579.	2.4	26
64	Mitochondrial Biology and Disease in Dictyostelium. International Review of Cytology, 2007, 263, 207-252.	6.2	29
65	Diverse Cytopathologies in Mitochondrial Disease Are Caused by AMP-activated Protein Kinase Signaling. Molecular Biology of the Cell, 2007, 18, 1874-1886.	2.1	68
66	Filamin repeat segments required for photosensory signalling in Dictyostelium discoideum. BMC Cell Biology, 2007, 8, 48.	3.0	12
67	Contribution of endoplasmic reticulum to Ca2+signals inDictyosteliumdepends on extracellular Ca2+. FEMS Microbiology Letters, 2006, 257, 268-277.	1.8	9
68	A phototaxis signalling complex in Dictyostelium discoideum. European Journal of Cell Biology, 2006, 85, 1099-1106.	3.6	17
69	Import-Associated Translational Inhibition: Novel In Vivo Evidence for Cotranslational Protein Import into Dictyostelium discoideum Mitochondria. Eukaryotic Cell, 2006, 5, 1314-1327.	3.4	20
70	Slug Phototaxis, Thermotaxis, and Spontaneous Turning Behavior. , 2006, 346, 137-170.		18
71	Release of Ca 2+ from the Endoplasmic Reticulum Contributes to Ca 2+ Signaling in Dictyostelium discoideum. Eukaryotic Cell, 2005, 4, 1513-1525.	3.4	22
72	The Dictyostelium genome encodes numerous RasGEFs with multiple biological roles. Genome Biology, 2005, 6, R68.	9.6	36

#	Article	IF	CITATIONS
73	Guenther Gerisch and Dictyostelium, the microbial model for ameboid motility and multicellular morphogenesis. Trends in Cell Biology, 2004, 14, 585-588.	7.9	4
74	Two Dictyostelium Orthologs of the Prokaryotic Cell Division Protein FtsZ Localize to Mitochondria and Are Required for the Maintenance of Normal Mitochondrial Morphology. Eukaryotic Cell, 2003, 2, 1315-1326.	3.4	65
75	Chaperonin 60 and mitochondrial disease in Dictyostelium. Journal of Muscle Research and Cell Motility, 2002, 23, 839-852.	2.0	35
76	Multiple signalling pathways connect chemoattractant receptors and calcium channels in Dictyostelium. Journal of Muscle Research and Cell Motility, 2002, 23, 853-865.	2.0	16
77	Chapter 19 Genetic analysis of phototaxis in Dictyostelium. Comprehensive Series in Photosciences, 2001, , 519-559.	0.3	3
78	Transcript mapping and processing of mitochondrial RNA in Dictyostelium discoideum. Current Genetics, 2001, 39, 355-364.	1.7	20
79	<i>Dictyostelium</i> RasD is required for normal phototaxis, but not differentiation. Genes and Development, 2000, 14, 1407-1413.	5.9	47
80	Polycistronic transcription and editing of the mitochondrial small subunit (SSU  ) ribosomal RNA in Dictyostelium discoideum. Current Genetics, 1999, 36, 55-61.	1.7	38
81	A Serpentine Receptor-Dependent, Gβ- and Ca2+ Influx-Independent Pathway Regulates Mitogen-Activated Protein Kinase ERK2 in Dictyostelium. Biochemical and Biophysical Research Communications, 1999, 260, 504-509.	2.1	3
82	Detection of two loci involved in (1->3)-Â-glucan (curdlan) biosynthesis by Agrobacterium sp. ATCC31749, and comparative sequence analysis of the putative curdlan synthase gene. Glycobiology, 1999, 9, 31-41.	2.5	113
83	Co-insertional Replication Is Responsible for Tandem Multimer Formation during Plasmid Integration into theDictyosteliumGenome. Plasmid, 1998, 39, 141-153.	1.4	33
84	A rapid, small scale method for characterization of plasmid insertions in the Dictyostelium genome. Nucleic Acids Research, 1998, 26, 3317-3318.	14.5	10
85	Mitochondrial Mutations Impair Signal Transduction inDictyostelium discoideumSlugs. Biochemical and Biophysical Research Communications, 1997, 234, 39-43.	2.1	36
86	Photosensory and thermosensory responses in Dictyostelium slugs are specifically impaired by absence of the F-actin cross-linking gelation factor (ABP-120). Current Biology, 1997, 7, 889-892.	3.9	38
87	Genetics of phototaxis in a model eukaryote,Dictyostelium discoideum. BioEssays, 1997, 19, 397-407.	2.5	48
88	A slow sustained increase in cytosolic Ca2+ levels mediates stalk gene induction by differentiation inducing factor in Dictyostelium EMBO Journal, 1996, 15, 5177-5183.	7.8	66
89	Efficient Circularization inEscherichia coliof Linear Plasmid Multimers fromDictyostelium discoideumGenomic DNA. Plasmid, 1996, 36, 86-94.	1.4	5
90	Primary Structure, Expression and Developmental Regulation of a Dictyostelium Calcineurin A Homologue. FEBS Journal, 1996, 238, 391-399.	0.2	53

#	Article	IF	CITATIONS
91	Replicon rescue: a novel strategy to clone the genomic DNA flanking insertions of integrating shuttle vector DNA. Nucleic Acids Research, 1996, 24, 4096-4097.	14.5	6
92	Analysis of a Complex Plasmid Insertion in a Phototaxis-Deficient Transformant of Dictyostelium discoideum Selected on a Micrococcus luteus Lawn. Plasmid, 1994, 32, 182-194.	1.4	55
93	The role of cGMP in photosensory and thermosensory transduction in Dictyostelium discoideum. Microbiology (United Kingdom), 1994, 140, 1619-1632.	1.8	13
94	Phototaxis genes on linkage group V in Dictyostelium discoideum. FEMS Microbiology Letters, 1993, 111, 123-127.	1.8	0
95	The role of gaseous metabolites in phototaxis byDictyostelium discoideumslugs. FEMS Microbiology Letters, 1991, 77, 117-120.	1.8	21
96	Quantitative analysis of cell motility and chemotaxis in Dictyostelium discoideum by using an image processing system and a novel chemotaxis chamber providing stationary chemical gradients Journal of Cell Biology, 1989, 108, 973-984.	5.2	189
97	Chemiluminescence inDictyostelium discoideum. FEMS Microbiology Letters, 1988, 50, 157-161.	1.8	11
98	Selection of chemotaxis mutants of Dictyostelium discoideum Journal of Cell Biology, 1987, 104, 151-161.	5.2	33
99	Multidirectional phototaxis byDictyostelium discoideumamoebae. FEMS Microbiology Letters, 1985, 29, 43-47.	1.8	13
100	Sensory Behaviour in Dictyostelium Discoideum Slugs: Phototaxis and Thermotaxis are not Mediated by a Change in Slug Speed. Journal of Cell Science, 1982, 54, 329-339.	2.0	13
101	An extracellular chemical signal controlling phototactic behavior by D. discoideum slugs. Cell, 1981, 23, 799-807.	28.9	85
102	Cell Patterning in Dictyostelium discoideum. Differentiation, 1981, 18, 61-63.	1.9	22
103	Bidirectional phototaxis by Dictyostelium discoideum slugs. FEMS Microbiology Letters, 1981, 12, 87-89.	1.8	0
104	Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus. Journal of Bacteriology, 1978, 135, 798-804.	2.2	114
105	2,4-D plasmids and persistence. Nature, 1977, 268, 732-733.	27.8	99