Min-Ling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8081562/publications.pdf

Version: 2024-02-01

62 papers

8,467 citations

304743 22 h-index 265206 42 g-index

64 all docs

64
docs citations

64 times ranked 4341 citing authors

#	Article	IF	CITATIONS
1	ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 2007, 40, 2038-2048.	8.1	2,647
2	A Review on Multi-Label Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, 2014, 26, 1819-1837.	5.7	2,080
3	Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and Data Engineering, 2006, 18, 1338-1351.	5.7	905
4	Lift: Multi-Label Learning with Label-Specific Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37, 107-120.	13.9	347
5	Multi-instance multi-label learning. Artificial Intelligence, 2012, 176, 2291-2320.	5.8	335
6	Multi-label learning by exploiting label dependency. , 2010, , .		276
7	Binary relevance for multi-label learning: an overview. Frontiers of Computer Science, 2018, 12, 191-202.	2.4	233
8	Ml-rbf: RBF Neural Networks for Multi-Label Learning. Neural Processing Letters, 2009, 29, 61-74.	3.2	169
9	Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowledge and Information Systems, 2007, 11, 155-170.	3.2	119
10	Multi-instance clustering with applications to multi-instance prediction. Applied Intelligence, 2009, 31, 47-68.	5.3	112
11	Disambiguation-Free Partial Label Learning. IEEE Transactions on Knowledge and Data Engineering, 2017, 29, 2155-2167.	5.7	107
12	Improve Multi-Instance Neural Networks through Feature Selection. Neural Processing Letters, 2004, 19, 1-10.	3.2	86
13	Maximum margin partial label learning. Machine Learning, 2017, 106, 573-593.	5 . 4	75
14	Partial Label Learning via Feature-Aware Disambiguation. , 2016, , .		73
15	Adapting RBF Neural Networks to Multi-Instance Learning. Neural Processing Letters, 2006, 23, 1-26.	3.2	53
16	MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing, 2009, 72, 3951-3956.	5.9	50
17	Exploiting unlabeled data to enhance ensemble diversity. Data Mining and Knowledge Discovery, 2013, 26, 98-129.	3.7	48
18	Leveraging Implicit Relative Labeling-Importance Information for Effective Multi-label Learning. , 2015, , .		46

#	Article	IF	Citations
19	Partial Multi-Label Learning via Credible Label Elicitation. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 3518-3525.	4.9	46
20	Towards Enabling Binary Decomposition for Partial Label Learning., 2018,,.		41
21	Adaptive Graph Guided Disambiguation for Partial Label Learning. , 2019, , .		40
22	Multi-View Multi-Label Learning with View-Specific Information Extraction., 2019,,.		40
23	Partial Multi-Label Learning via Credible Label Elicitation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3587-3599.	13.9	38
24	Multi-dimensional classification via kNN feature augmentation. Pattern Recognition, 2020, 106, 107423.	8.1	36
25	Large-scale multi-label classification using unknown streaming images. Pattern Recognition, 2020, 99, 107100.	8.1	33
26	Introduction to the special issue on learning from multi-label data. Machine Learning, 2012, 88, 1-4.	5.4	32
27	Towards Class-Imbalance Aware Multi-Label Learning. IEEE Transactions on Cybernetics, 2022, 52, 4459-4471.	9.5	32
28	Multi-View Partial Multi-Label Learning with Graph-Based Disambiguation. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 3553-3560.	4.9	28
29	Multi-label Learning. , 2017, , 875-881.		25
30	Leveraging Implicit Relative Labeling-Importance Information for Effective Multi-Label Learning. IEEE Transactions on Knowledge and Data Engineering, 2019, , 1 -1.	5.7	21
31	Compositional metric learning for multi-label classification. Frontiers of Computer Science, 2021, 15, 1.	2.4	21
32	Supervised representation learning for multi-label classification. Machine Learning, 2019, 108, 747-763.	5.4	20
33	Weakly Supervised POS Tagging without Disambiguation. ACM Transactions on Asian and Low-Resource Language Information Processing, 2018, 17, 1-19.	2.0	18
34	Towards Mitigating the Class-Imbalance Problem for Partial Label Learning. , 2018, , .		17
35	Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction. , 2019, , .		17
36	Feature-Induced Manifold Disambiguation for Multi-View Partial Multi-label Learning. , 2020, , .		16

#	Article	IF	CITATIONS
37	Multi-dimensional classification via stacked dependency exploitation. Science China Information Sciences, 2020, 63, 1.	4.3	15
38	Disambiguation-Free Partial Label Learning. , 2014, , .		14
39	Multi-Label Classification with Label-Specific Feature Generation: A Wrapped Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, PP, 1-1.	13.9	14
40	Adaptive Graph Guided Disambiguation for Partial Label Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 8796-8811.	13.9	14
41	Transfer synthetic over-sampling for class-imbalance learning with limited minority class data. Frontiers of Computer Science, 2019, 13, 996-1009.	2.4	12
42	Correlation-Guided Representation for Multi-Label Text Classification. , 2021, , .		11
43	Partial Label Dimensionality Reduction via Confidence-Based Dependence Maximization., 2021, , .		11
44	Multi-dimensional Classification via Selective Feature Augmentation., 2022, 19, 38-51.		11
45	Exploiting Unlabeled Data to Enhance Ensemble Diversity. , 2010, , .		10
46	Multi-Dimensional Classification via Decomposed Label Encoding. IEEE Transactions on Knowledge and Data Engineering, 2023, 35, 1844-1856.	5.7	9
47	Multi-label Learning with Label-Specific Features via Clustering Ensemble. , 2017, , .		8
48	Maximum Margin Multi-Dimensional Classification. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7185-7198.	11.3	8
49	BiLabel-Specific Features for Multi-Label Classification. ACM Transactions on Knowledge Discovery From Data, 2022, 16, 1-23.	3.5	8
50	Collaborative Learning of Label Semantics and Deep Label-Specific Features for Multi-Label Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 9860-9871.	13.9	8
51	Disambiguation Enabled Linear Discriminant Analysis for Partial Label Dimensionality Reduction. ACM Transactions on Knowledge Discovery From Data, 2022, 16, 1-18.	3.5	6
52	Maximum Margin Multi-Dimensional Classification. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 4312-4319.	4.9	5
53	Stable Label-Specific Features Generation for Multi-Label Learning via Mixture-Based Clustering Ensemble. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1248-1261.	13.1	5
54	Learning from Complementary Labels via Partial-Output Consistency Regularization., 2021,,.		3

#	Article	IF	CITATIONS
55	Md-knn: An Instance-based Approach for Multi-Dimensional Classification. , 2021, , .		3
56	Multi-Dimensional Classification via kNN Feature Augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 3975-3982.	4.9	2
57	Neighborhood kinship preserving hashing for supervised learning. Signal Processing: Image Communication, 2019, 76, 31-40.	3.2	2
58	CAFE: Adaptive VDI Workload Prediction with Multi-Grained Features. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 5821-5828.	4.9	2
59	Decomposition-Based Classifier Chains for Multi-Dimensional Classification. IEEE Transactions on Artificial Intelligence, 2022, 3, 176-191.	4.7	2
60	BAMBOO: A Multi-instance Multi-label Approach Towards VDI User Logon Behavior Modeling. , 2021, , .		1
61	Disambiguation-free partial label learning. Scientia Sinica Informationis, 2019, 49, 1083-1096.	0.4	1
62	CAFE and SOUP: Toward Adaptive VDI Workload Prediction. ACM Transactions on Intelligent Systems and Technology, 2022, 13, 1-28.	4.5	0