Daniel J Drucker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/808103/publications.pdf

Version: 2024-02-01

25 papers 1,805 citations

471509 17 h-index 25 g-index

25 all docs

25 docs citations

25 times ranked

2893 citing authors

#	Article	IF	CITATIONS
1	GLP-1 physiology informs the pharmacotherapy of obesity. Molecular Metabolism, 2022, 57, 101351.	6.5	119
2	Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocrine Reviews, 2021, 42, 101-132.	20.1	115
3	Transforming type 1 diabetes: the next wave of innovation. Diabetologia, 2021, 64, 1059-1065.	6.3	8
4	Diabetes, obesity, metabolism, and SARS-CoV-2 infection: the end of the beginning. Cell Metabolism, 2021, 33, 479-498.	16.2	179
5	Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Molecular Metabolism, 2021, 46, 101090.	6.5	150
6	TCF7 is not essential for glucose homeostasis in mice. Molecular Metabolism, 2021, 48, 101213.	6.5	1
7	Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight, 2021, 6, .	5.0	23
8	Cardiorenal mechanisms of action of glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Med, 2021, 2, 1203-1230.	4.4	17
9	Advances in oral peptide therapeutics. Nature Reviews Drug Discovery, 2020, 19, 277-289.	46.4	354
10	Proglucagon-Derived Peptides, Glucose-Dependent Insulinotropic Polypeptide, and Dipeptidyl Peptidase-4-Mechanisms of Action in Adipose Tissue. Endocrinology, 2020, 161, .	2.8	15
11	Plasma levels of DPP4 activity and sDPP4 are dissociated from inflammation in mice and humans. Nature Communications, 2020, 11, 3766.	12.8	43
12	The gut hormone receptor GIPR links energy availability to the control of hematopoiesis. Molecular Metabolism, 2020, 39, 101008.	6.5	12
13	L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes, 2020, 69, 614-623.	0.6	54
14	Coronavirus Infections and Type 2 Diabetesâ€"Shared Pathways with Therapeutic Implications. Endocrine Reviews, 2020, 41, .	20.1	314
15	Intestine-selective reduction of Gcg expression reveals the importance of the distal gut for GLP-1 secretion. Molecular Metabolism, 2020, 37, 100990.	6.5	39
16	Loss of Glp2r signaling activates hepatic stellate cells and exacerbates diet-induced steatohepatitis in mice. JCl Insight, 2020, 5 , .	5.0	11
17	Hematopoietic cell– versus enterocyte-derived dipeptidyl peptidase-4 differentially regulates triglyceride excursion in mice. JCl Insight, 2020, 5, .	5.0	7
18	Localization of Glucagon-Like Peptide-2 Receptor Expression in the Mouse. Endocrinology, 2019, 160, 1950-1963.	2.8	33

#	Article	IF	CITATION
19	The Discovery of GLP-2 and Development of Teduglutide for Short Bowel Syndrome. ACS Pharmacology and Translational Science, 2019, 2, 134-142.	4.9	28
20	Hepatic Glucagon Receptor Signaling Enhances Insulin-Stimulated Glucose Disposal in Rodents. Diabetes, 2018, 67, 2157-2166.	0.6	44
21	Sitagliptin Accelerates Endothelial Regeneration after Vascular Injury Independent from GLP1 Receptor Signaling. Stem Cells International, 2018, 2018, 1-11.	2.5	14
22	The Ascending GLP-1 Road From Clinical Safety to Reduction of Cardiovascular Complications. Diabetes, 2018, 67, 1710-1719.	0.6	64
23	Glucagon Receptor Signaling Regulates Energy Metabolism via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21. Diabetes, 2018, 67, 1773-1782.	0.6	54
24	\hat{l}^2 -Cell Inactivation of <i>Gpr119</i> Unmasks Incretin Dependence of GPR119-Mediated Glucoregulation. Diabetes, 2017, 66, 1626-1635.	0.6	25
25	Dipeptidyl Peptidase 4 Inhibition Stimulates Distal Tubular Natriuresis and Increases in Circulating SDF-1α1-67 in Patients With Type 2 Diabetes. Diabetes Care, 2017, 40, 1073-1081.	8.6	82