Nasim Annabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8080862/publications.pdf Version: 2024-02-01

145 papers	19,130 citations	10373 72 h-index	11601 135 g-index
151	151	151	21472
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015, 73, 254-271.	5.7	1,871
2	25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 2014, 26, 85-124.	11.1	1,103
3	Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 371-383.	2.5	925
4	Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering. ACS Nano, 2013, 7, 2891-2897.	7.3	693
5	Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 2014, 10, 11-25.	4.1	611
6	Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 108-118.	3.9	595
7	A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016, 8, 014101.	3.7	466
8	Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. Biomaterials, 2017, 139, 229-243.	5.7	417
9	Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnology Advances, 2013, 31, 669-687.	6.0	386
10	Microfabricated Biomaterials for Engineering 3D Tissues. Advanced Materials, 2012, 24, 1782-1804.	11.1	351
11	Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. Advanced Healthcare Materials, 2017, 6, 1700015.	3.9	310
12	PGS:Gelatin nanofibrous scaffolds with tunable mechanical andÂstructural properties for engineering cardiac tissues. Biomaterials, 2013, 34, 6355-6366.	5.7	273
13	Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Advanced Materials, 2021, 33, e2100176.	11.1	271
14	Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules, 2013, 14, 1085-1092.	2.6	269
15	Engineering a highly elastic human protein–based sealant for surgical applications. Science Translational Medicine, 2017, 9, .	5.8	261
16	Vascularized Bone Tissue Engineering: Approaches for Potential Improvement. Tissue Engineering - Part B: Reviews, 2012, 18, 363-382.	2.5	259
17	Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials, 2014, 35, 7346-7354.	5.7	249
18	Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomaterialia, 2017, 49, 66-77.	4.1	244

#	Article	IF	CITATIONS
19	Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Science Advances, 2019, 5, eaav1281.	4.7	229
20	Highly Elastic and Conductive Humanâ€Based Protein Hybrid Hydrogels. Advanced Materials, 2016, 28, 40-49.	11.1	226
21	Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 2012, 33, 9009-9018.	5.7	221
22	In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomaterials Science, 2017, 5, 2093-2105.	2.6	218
23	Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. Advanced Functional Materials, 2013, 23, 4950-4959.	7.8	201
24	A Highly Elastic and Rapidly Crosslinkable Elastin‣ike Polypeptideâ€Based Hydrogel for Biomedical Applications. Advanced Functional Materials, 2015, 25, 4814-4826.	7.8	201
25	A Bioactive Carbon Nanotubeâ€Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016, 28, 3280-3289.	11.1	199
26	Local Immunomodulation Using an Adhesive Hydrogel Loaded with miRNA‣aden Nanoparticles Promotes Wound Healing. Small, 2019, 15, e1902232.	5.2	197
27	Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis. ACS Applied Materials & amp; Interfaces, 2017, 9, 11428-11439.	4.0	193
28	A highly adhesive and naturally derived sealant. Biomaterials, 2017, 140, 115-127.	5.7	188
29	Controlling Mechanical Properties of Cell‣aden Hydrogels by Covalent Incorporation of Graphene Oxide. Small, 2014, 10, 514-523.	5.2	183
30	Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia, 2011, 7, 1653-1664.	4.1	182
31	Elastic sealants for surgical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 27-39.	2.0	182
32	Engineering porous scaffolds using gas-based techniques. Current Opinion in Biotechnology, 2011, 22, 661-666.	3.3	178
33	Advances and limitations of drug delivery systems formulated as eye drops. Journal of Controlled Release, 2020, 321, 1-22.	4.8	175
34	Integrinâ€Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. Advanced Healthcare Materials, 2017, 6, 1700289.	3.9	169
35	Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials, 2009, 30, 4550-4557.	5.7	165
36	Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 691-705.	1.9	162

#	Article	IF	CITATIONS
37	Surgical materials: Current challenges and nano-enabled solutions. Nano Today, 2014, 9, 574-589.	6.2	158
38	A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics. Advanced Functional Materials, 2018, 28, 1703437.	7.8	152
39	Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. International Journal of Biological Macromolecules, 2021, 170, 728-750.	3.6	151
40	Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1331-1348.	1.9	149
41	Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials, 2017, 139, 163-171.	5.7	140
42	Rational design of microfabricated electroconductive hydrogels for biomedical applications. Progress in Polymer Science, 2019, 92, 135-157.	11.8	138
43	Hydrogels for cardiac tissue engineering. NPG Asia Materials, 2014, 6, e99-e99.	3.8	132
44	The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials, 2009, 30, 1-7.	5.7	131
45	Composite Living Fibers for Creating Tissue Constructs Using Textile Techniques. Advanced Functional Materials, 2014, 24, 4060-4067.	7.8	131
46	Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials, 2014, 35, 7774-7785.	5.7	131
47	Oxygenâ€releasing biomaterials for tissue engineering. Polymer International, 2013, 62, 843-848.	1.6	129
48	Hydrogel Templates for Rapid Manufacturing of Bioactive Fibers and 3D Constructs. Advanced Healthcare Materials, 2015, 4, 2146-2153.	3.9	127
49	Biodegradable Nanofibrous Polymeric Substrates for Generating Elastic and Flexible Electronics. Advanced Materials, 2014, 26, 5823-5830.	11.1	117
50	Bioprinting of a Cell-Laden Conductive Hydrogel Composite. ACS Applied Materials & Interfaces, 2019, 11, 30518-30533.	4.0	117
51	The effect of elastin on chondrocyte adhesion and proliferation on poly (É›-caprolactone)/elastin composites. Biomaterials, 2011, 32, 1517-1525.	5.7	112
52	Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab on A Chip, 2013, 13, 3569.	3.1	112
53	Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery. Advanced Healthcare Materials, 2016, 5, 175-184.	3.9	109
54	Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. Biotechnology Advances, 2016, 34, 362-379.	6.0	106

#	Article	IF	CITATIONS
55	Humanâ€Recombinantâ€Elastinâ€Based Bioinks for 3D Bioprinting of Vascularized Soft Tissues. Advanced Materials, 2020, 32, e2003915.	11.1	104
56	Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties. Scientific Reports, 2017, 7, 4345.	1.6	103
57	Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials, 2010, 31, 1655-1665.	5.7	102
58	Engineering Adhesive and Antimicrobial Hyaluronic Acid/Elastin-like Polypeptide Hybrid Hydrogels for Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2018, 4, 2528-2540.	2.6	102
59	Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomaterialia, 2012, 8, 570-578.	4.1	100
60	Engineered cell-laden human protein-based elastomer. Biomaterials, 2013, 34, 5496-5505.	5.7	99
61	Facile Oneâ€Step Micropatterning Using Photodegradable Gelatin Hydrogels for Improved Cardiomyocyte Organization and Alignment. Advanced Functional Materials, 2015, 25, 977-986.	7.8	98
62	Electrospun PGS:PCL Microfibers Align Human Valvular Interstitial Cells and Provide Tunable Scaffold Anisotropy. Advanced Healthcare Materials, 2014, 3, 929-939.	3.9	95
63	Engineering a naturally-derived adhesive and conductive cardiopatch. Biomaterials, 2019, 207, 89-101.	5.7	93
64	Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. Scientific Reports, 2017, 7, 9220.	1.6	90
65	An Antimicrobial Dental Light Curable Bioadhesive Hydrogel for Treatment of Peri-Implant Diseases. Matter, 2019, 1, 926-944.	5.0	90
66	A cost-effective fluorescence mini-microscope for biomedical applications. Lab on A Chip, 2015, 15, 3661-3669.	3.1	86
67	Elastomeric recombinant protein-based biomaterials. Biochemical Engineering Journal, 2013, 77, 110-118.	1.8	85
68	Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials, 2019, 197, 345-367.	5.7	84
69	Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomaterials Science, 2018, 6, 2938-2950.	2.6	83
70	Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair. Tissue Engineering - Part A, 2018, 24, 1393-1405.	1.6	80
71	Engineered Hemostatic Biomaterials for Sealing Wounds. Chemical Reviews, 2022, 122, 12864-12903.	23.0	79
72	Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials, 2021, 267, 120476.	5.7	76

#	Article	IF	CITATIONS
73	Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties. ACS Biomaterials Science and Engineering, 2018, 4, 1558-1567.	2.6	75
74	Fabrication of porous PCL/elastin composite scaffolds for tissue engineering applications. Journal of Supercritical Fluids, 2011, 59, 157-167.	1.6	74
75	Nanostructured Fibrous Membranes with Rose Spike-Like Architecture. Nano Letters, 2017, 17, 6235-6240.	4.5	72
76	Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing. Acta Biomaterialia, 2021, 124, 191-204.	4.1	72
77	Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by <i>in Situ</i> Dopamine Polymerization. ACS Applied Materials & amp; Interfaces, 2021, 13, 40290-40301.	4.0	72
78	Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Annals of Biomedical Engineering, 2016, 44, 1908-1920.	1.3	71
79	Mechanical and Biochemical Stimulation of 3D Multilayered Scaffolds for Tendon Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 2953-2964.	2.6	66
80	Microengineered 3D cellâ€laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnology and Bioengineering, 2017, 114, 217-231.	1.7	61
81	Engineering Photocrosslinkable Bicomponent Hydrogel Constructs for Creating 3D Vascularized Bone. Advanced Healthcare Materials, 2017, 6, 1601122.	3.9	59
82	Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1314-1330.	1.9	58
83	Visible light crosslinkable human hair keratin hydrogels. Bioengineering and Translational Medicine, 2018, 3, 37-48.	3.9	57
84	Droplet-based microfluidics in biomedical applications. Biofabrication, 2022, 14, 022001.	3.7	50
85	Targeting antigen-presenting cells by anti–PD-1 nanoparticles augments antitumor immunity. JCI Insight, 2018, 3, .	2.3	48
86	Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL–PEG–PCL for controlled delivery of 5FU. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 938-945.	1.9	44
87	Ciprofloxacin-loaded bioadhesive hydrogels for ocular applications. Biomaterials Science, 2020, 8, 5196-5209.	2.6	44
88	A microfluidic-based neurotoxin concentration gradient for the generation of an <i>in vitro</i> model of Parkinson's disease. Biomicrofluidics, 2011, 5, 22214.	1.2	43
89	Significant role of cationic polymers in drug delivery systems. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1-20.	1.9	40
90	Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival. Scientific Reports, 2019, 9, 6535.	1.6	39

#	Article	IF	CITATIONS
91	Electrochemiluminescence methods using CdS quantum dots in aptamer-based thrombin biosensors: a comparative study. Mikrochimica Acta, 2020, 187, 25.	2.5	39
92	Controlled Release of Drugs from Gradient Hydrogels for High-Throughput Analysis of Cell–Drug Interactions. Analytical Chemistry, 2012, 84, 1302-1309.	3.2	36
93	Adenosine-associated delivery systems. Journal of Drug Targeting, 2015, 23, 580-596.	2.1	34
94	pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and <i>in vitro</i> studies on A549 lung cancer cell and MR imaging. Drug Development and Industrial Pharmacy, 2018, 44, 452-462.	0.9	34
95	A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. Experimental Eye Research, 2021, 205, 108472.	1.2	34
96	Natural lecithin promotes neural network complexity and activity. Scientific Reports, 2016, 6, 25777.	1.6	33
97	Surgical sealants and high strength adhesives. Materials Today, 2015, 18, 176-177.	8.3	32
98	Bioactive and Elastic Nanocomposites with Antimicrobial Properties for Bone Tissue Regeneration. ACS Applied Bio Materials, 2020, 3, 3313-3325.	2.3	32
99	3Dâ€Printed Sugarâ€Based Stents Facilitating Vascular Anastomosis. Advanced Healthcare Materials, 2018, 7, e1800702.	3.9	30
100	Breathable hydrogel dressings containing natural antioxidants for management of skin disorders. Journal of Biomaterials Applications, 2019, 33, 1265-1276.	1.2	30
101	Synthesis and characterization of osteoinductive visible lightâ€activated adhesive composites with antimicrobial properties. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 66-81.	1.3	30
102	Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discovery Today, 2021, 26, 1437-1449.	3.2	30
103	Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. Materials Horizons, 2018, 5, 813-822.	6.4	28
104	Nanoengineered Shear-Thinning Hydrogel Barrier for Preventing Postoperative Abdominal Adhesions. Nano-Micro Letters, 2021, 13, 212.	14.4	28
105	Colloidal multiscale porous adhesive (bio)inks facilitate scaffold integration. Applied Physics Reviews, 2021, 8, 041415.	5.5	28
106	Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2022, 11, e2200055.	3.9	28
107	Stateâ€ofâ€ŧheâ€Art and Trends in Synthesis, Properties, and Application of Quantum Dotsâ€Based Nanomaterials. Particle and Particle Systems Characterization, 2019, 36, 1800302.	1.2	27
108	Development and characterization of a hydrogel-based adhesive patch for sealing open-globe injuries. Acta Biomaterialia, 2022, 137, 53-63.	4.1	27

#	Article	IF	CITATIONS
109	Engineering a naturally derived hemostatic sealant for sealing internal organs. Materials Today Bio, 2022, 13, 100199.	2.6	26
110	Effect of Dense Gas CO ₂ on the Coacervation of Elastin. Biomacromolecules, 2008, 9, 1100-1105.	2.6	25
111	Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. Carbohydrate Polymers, 2020, 250, 116861.	5.1	25
112	Realization of tunable artificial synapse and memory based on amorphous oxide semiconductor transistor. Scientific Reports, 2017, 7, 10997.	1.6	24
113	Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials, 2019, 198, 78-94.	5.7	24
114	Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. Nano Today, 2021, 36, 101045.	6.2	24
115	Supercritical CO2 sterilization of ultra-high molecular weight polyethylene. Journal of Supercritical Fluids, 2010, 52, 235-240.	1.6	23
116	Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties. Nanomaterials, 2017, 7, 63.	1.9	23
117	Poly (Ethylene Glycol)â€Based Hydrogels as Selfâ€Inflating Tissue Expanders with Tunable Mechanical and Swelling Properties. Macromolecular Bioscience, 2017, 17, 1600479.	2.1	22
118	Sterilization of ginseng using a high pressure CO ₂ at moderate temperatures. Biotechnology and Bioengineering, 2009, 102, 569-576.	1.7	21
119	Laterally Confined Microfluidic Patterning of Cells for Engineering Spatially Defined Vascularization. Small, 2016, 12, 5132-5139.	5.2	21
120	Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Critical Reviews in Biotechnology, 2017, 37, 53-68.	5.1	21
121	Nanodelivery of Mycophenolate Mofetil to the Organ Improves Transplant Vasculopathy. ACS Nano, 2019, 13, 12393-12407.	7.3	21
122	Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery. EBioMedicine, 2018, 38, 79-88.	2.7	20
123	Synthetic elastin hydrogels that are coblended with heparin display substantial swelling, increased porosity, and improved cell penetration. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1215-1222.	2.1	19
124	Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery. Biomaterials Science, 2020, 8, 1127-1136.	2.6	18
125	Targeted nanomedicines for the treatment of bone disease and regeneration. Medicinal Research Reviews, 2021, 41, 1221-1254.	5.0	18
126	Characterization, mechanistic analysis and improving the properties of denture adhesives. Dental Materials, 2018, 34, 120-131.	1.6	16

#	Article	IF	CITATIONS
127	Selective trafficking of light chain-conjugated nanoparticles to the kidney and renal cell carcinoma. Nano Today, 2020, 35, 100990.	6.2	16
128	Gelatin Methacryloyl Bioadhesive Improves Survival and Reduces Scar Burden in a Mouse Model of Myocardial Infarction. Journal of the American Heart Association, 2020, 9, e014199.	1.6	16
129	Suturable elastomeric tubular grafts with patterned porosity for rapid vascularization of 3D constructs. Biofabrication, 2021, 13, 035020.	3.7	11
130	Templateâ€Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels. Advanced Healthcare Materials, 2022, 11, e2102123.	3.9	10
131	Engineering a highly elastic bioadhesive for sealing soft and dynamic tissues. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1511-1522.	1.6	10
132	Clial cells influence cardiac permittivity as evidenced through <i>in vitro</i> and <i>in silico</i> models. Biofabrication, 2020, 12, 015014.	3.7	9
133	Strategies to prevent dopamine oxidation and related cytotoxicity using various antioxidants and nitrogenation. Emergent Materials, 2019, 2, 209-217.	3.2	8
134	Engineering elastic sealants based on gelatin and elastinâ€like polypeptides for endovascular anastomosis. Bioengineering and Translational Medicine, 2021, 6, e10240.	3.9	8
135	Tissue Regeneration: A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics (Adv. Funct. Mater. 3/2018). Advanced Functional Materials, 2018, 28, 1870021.	7.8	6
136	Growth factor-eluting hydrogels for management of corneal defects. Materials Science and Engineering C, 2021, 120, 111790.	3.8	6
137	A new aspiration device equipped with a hydro-separator for acute ischemic stroke due to challenging soft and stiff clots. Interventional Neuroradiology, 2022, 28, 43-49.	0.7	6
138	Biomaterials, Cells, and Patho-physiology: Building Better Organoids and On-Chip Technologies. Biomaterials, 2019, 198, 1-2.	5.7	4
139	Voices of biotech research. Nature Biotechnology, 2021, 39, 281-286.	9.4	3
140	Bioactive Fibers: Hydrogel Templates for Rapid Manufacturing of Bioactive Fibers and 3D Constructs (Adv. Healthcare Mater. 14/2015). Advanced Healthcare Materials, 2015, 4, 2050-2050.	3.9	2
141	Effect of gelatin methacryloyl hydrogel on healing of the guinea pig vaginal wall with or without mesh augmentation. International Urogynecology Journal, 2022, 33, 2223-2232.	0.7	2
142	Cellular Mechanisms of Rejection of Optic and Sciatic Nerve Transplants: An Observational Study. Transplantation Direct, 2020, 6, e589.	0.8	1
143	Functional Biomaterials: Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue (Adv. Funct. Mater. 39/2013). Advanced Functional Materials, 2013, 23, 4949-4949.	7.8	0

Dissolvable Stents: 3D-Printed Sugar-Based Stents Facilitating Vascular Anastomosis (Adv. Healthcare) Tj ETQq0 0 0.9 gBT /Overlock 10 T

#	Article	IF	CITATIONS
145	Glial Cells in the Heart? Replicating the Diversity of the Myocardium with Low-Cost 3D Models. SSRN Electronic Journal, 0, , .	0.4	0