Su Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8080774/publications.pdf

Version: 2024-02-01

38	1,724	24 h-index	36
papers	citations		g-index
38	38	38	1649
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	First-principles Studies of Second-Order Nonlinear Optical Properties of Organic-Inorganic Hybrid Halide Perovskites. Physical Review Applied, 2020, 13, .	3.8	24
2	Highly Stable Perovskite Solar Cells Fabricated Under Humid Ambient Conditions. IEEE Journal of Photovoltaics, 2017, 7, 532-538.	2.5	23
3	Electrosprayâ€Assisted Fabrication of Moistureâ€Resistant and Highly Stable Perovskite Solar Cells at Ambient Conditions. Advanced Energy Materials, 2017, 7, 1700210.	19.5	51
4	Band Gap Insensitivity to Large Chemical Pressures in Ternary Bismuth Iodides for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 28924-28932.	3.1	54
5	Poling efficiency enhancement of tethered binary nonlinear optical chromophores for achieving an ultrahigh n ³ r ₃₃ figure-of-merit of 2601 pm V ^{â~1} . Journal of Materials Chemistry C, 2015, 3, 6737-6744.	5.5	36
6	Spontaneously poling of electro-optic polymer thin films across a 1.1-mm thick glass substrate by pyroelectric crystals. Applied Physics Letters, 2014, 105, .	3.3	6
7	Scalable Highâ€fidelity Growth of Semiconductor Nanorod Arrays with Controlled Geometry for Photovoltaic Devices Using Block Copolymers. Small, 2014, 10, 4304-4309.	10.0	10
8	Role of HF in Oxygen Removal from Carbon Nanotubes: Implications for High Performance Carbon Electronics. Nano Letters, 2014, 14, 6179-6184.	9.1	32
9	Enhanced temporal stability of a highly efficient guest–host electro-optic polymer through a barrier layer assisted poling process. Journal of Materials Chemistry, 2012, 22, 20353.	6.7	23
10	Dipolar Chromophore Facilitated Huisgen Cross-Linking Reactions for Highly Efficient and Thermally Stable Electrooptic Polymers. ACS Macro Letters, 2012, 1, 793-796.	4.8	25
11	Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. Journal of Materials Chemistry, 2012, 22, 951-959.	6.7	47
12	Push–pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups. Journal of Materials Chemistry, 2012, 22, 16390.	6.7	75
13	Efficient Poling of Electroâ€Optic Polymers in Thin Films and Silicon Slot Waveguides by Detachable Pyroelectric Crystals. Advanced Materials, 2012, 24, OP42-7.	21.0	28
14	Electroâ€optical Materials: Efficient Poling of Electroâ€Optic Polymers in Thin Films and Silicon Slot Waveguides by Detachable Pyroelectric Crystals (Adv. Mater. 10/2012). Advanced Materials, 2012, 24, OP1.	21.0	4
15	Facile structure and property tuning through alteration of ring structures in conformationally locked phenyltetraene nonlinear optical chromophores. Journal of Materials Chemistry, 2011, 21, 4437.	6.7	52
16	Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications. Chemistry of Materials, 2011, 23, 544-553.	6.7	110
17	Sub-Volt Silicon-Organic Electro-optic Modulator With 500 MHz Bandwidth. Journal of Lightwave Technology, 2011, 29, 1112-1117.	4.6	42
18	Silicon-polymer hybrid slot waveguide ring-resonator modulator. Optics Express, 2011, 19, 3952.	3.4	114

#	Article	IF	Citations
19	A Triptycene-Containing Chromophore for Improved Temporal Stability of Highly Efficient Guestâ^'Host Electrooptic Polymers. Macromolecules, 2011, 44, 1261-1265.	4.8	23
20	Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric tensor components in poled polymer films. Proceedings of SPIE, 2010, , .	0.8	2
21	A low V <inf>π</inf> L modulator with GHz bandwidth based on an electro-optic polymer-clad silicon slot waveguide. , 2010, , .		1
22	Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode. Applied Physics Letters, 2010, 96, .	3.3	70
23	Mach–Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films. Applied Physics Letters, 2010, 97, .	3.3	25
24	Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes. Optics Express, 2010, 18, 6779.	3.4	13
25	Tuning the Kinetics and Energetics of Dielsâ^'Alder Cycloaddition Reactions to Improve Poling Efficiency and Thermal Stability of High-Temperature Cross-Linked Electro-Optic Polymers. Chemistry of Materials, 2010, 22, 5601-5608.	6.7	46
26	Supramolecular Selfâ€Assembled Dendritic Nonlinear Optical Chromophores: Fineâ€Tuning of Areneâ€"Perfluoroarene Interactions for Ultralarge Electroâ€Optic Activity and Enhanced Thermal Stability. Advanced Materials, 2009, 21, 1976-1981.	21.0	96
27	Controlled Dielsâ^'Alder Reactions Used To Incorporate Highly Efficient Polyenic Chromophores into Maleimide-Containing Side-Chain Polymers for Electro-Optics. Macromolecules, 2009, 42, 2438-2445.	4.8	39
28	Binary Chromophore Systems in Nonlinear Optical Dendrimers and Polymers for Large Electrooptic Activities. Journal of Physical Chemistry C, 2008, 112, 8091-8098.	3.1	121
29	Reinforced Site Isolation Leading to Remarkable Thermal Stability and High Electrooptic Activities in Cross-Linked Nonlinear Optical Dendrimers. Chemistry of Materials, 2008, 20, 6372-6377.	6.7	72
30	Electro-optic polymer cladding ring resonator modulators. Optics Express, 2008, 16, 18326.	3.4	67
31	Donorâ´Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability. Chemistry of Materials, 2008, 20, 5047-5054.	6.7	156
32	Wideband 15THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths. Applied Physics Letters, 2008, 92, .	3.3	102
33	Phenyltetraene-Based Nonlinear Optical Chromophores with Enhanced Chemical Stability and Electrooptic Activity. Organic Letters, 2007, 9, 4471-4474.	4.6	86
34	Nanostructured Functional Block Copolymers for Electrooptic Devices. Macromolecules, 2007, 40, 97-104.	4.8	30
35	New paradigm for ultrahigh electro-optic activity: through supramolecular self-assembly and novel lattice hardening., 2007,,.		0
36	PREPARATION AND CHARACTERIZATION OF PLZT FERROELECTRIC INVERSE OPAL. International Journal of Modern Physics B, 2005, 19, 2769-2774.	2.0	3

Su Huang

#	Article	IF	CITATION
37	Effect of in situ applied electric field on the growth of La2Ti2O7 thin films by chemical solution deposition. Journal of Crystal Growth, 2004, 268, 198-203.	1.5	14
38	Ferroelectric SrBi2Ta2O9-SiO2 Glass-Ceramic Thin Films in Metal/Ferroelectric/Insulator/Semiconductor Structures. Physica Status Solidi A, 2002, 193, R4-R6.	1.7	2