## Tina C Summerfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8080667/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A gene (PEX) with homologies to endopeptidases is mutated in patients with X–linked hypophosphatemic rickets. Nature Genetics, 1995, 11, 130-136.                                                              | 21.4 | 1,067     |
| 2  | Differential Transcriptional Analysis of the Cyanobacterium <i>Cyanothece</i> sp. Strain ATCC 51142<br>during Light-Dark and Continuous-Light Growth. Journal of Bacteriology, 2008, 190, 3904-3913.           | 2.2  | 134       |
| 3  | The Mechanism of Iron Homeostasis in the Unicellular Cyanobacterium <i>Synechocystis</i> sp. PCC 6803 and Its Relationship to Oxidative Stress  Â. Plant Physiology, 2009, 150, 2045-2056.                     | 4.8  | 105       |
| 4  | The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC 6803 and regulation of gene expression by HrcA and SigB. Archives of Microbiology, 2006, 186, 273-286.                              | 2.2  | 92        |
| 5  | Low-Oxygen Induction of Normally Cryptic <i>psbA</i> Genes in Cyanobacteria. Biochemistry, 2008, 47, 12939-12941.                                                                                              | 2.5  | 80        |
| 6  | Global Transcriptional Response of the Alkali-Tolerant Cyanobacterium <i>Synechocystis</i> sp. Strain<br>PCC 6803 to a pH 10 Environment. Applied and Environmental Microbiology, 2008, 74, 5276-5284.         | 3.1  | 77        |
| 7  | PsbQ (Sll1638) in Synechocystis sp. PCC 6803 Is Required for Photosystem II Activity in Specific Mutants and in Nutrient-Limiting Conditions. Biochemistry, 2005, 44, 805-815.                                 | 2.5  | 68        |
| 8  | Whole genome re-sequencing of two â€~wild-type' strains of the model<br>cyanobacterium <i>Synechocystis</i> sp. PCC 6803. New Zealand Journal of Botany, 2014, 52, 36-47.                                      | 1.1  | 50        |
| 9  | Investigation of a requirement for the PsbP-like protein in Synechocystis sp. PCC 6803. Photosynthesis<br>Research, 2005, 84, 263-268.                                                                         | 2.9  | 37        |
| 10 | Role of Sigma Factors in Controlling Global Gene Expression in Light/Dark Transitions in the<br>Cyanobacterium <i>Synechocystis</i> sp. Strain PCC 6803. Journal of Bacteriology, 2007, 189, 7829-7840.        | 2.2  | 37        |
| 11 | Homogeneous environmental selection dominates microbial community assembly in the oligotrophic<br>South Pacific Gyre. Molecular Ecology, 2020, 29, 4680-4691.                                                  | 3.9  | 33        |
| 12 | Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803<br>demonstrates Hik31-dependent and -independent responses. Microbiology (United Kingdom), 2011, 157,<br>301-312. | 1.8  | 29        |
| 13 | Stabilization of Photosystem II by the PsbT protein impacts photodamage, repair and biogenesis.<br>Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148234.                                          | 1.0  | 29        |
| 14 | TRANSCRIPTIONAL ANALYSIS OF THE UNICELLULAR, DIAZOTROPHIC CYANOBACTERIUM <i>CYANOTHECE</i> SP. ATCC 51142 GROWN UNDER SHORT DAY/NIGHT CYCLES <sup>1</sup> . Journal of Phycology, 2009, 45, 610-620.           | 2.3  | 28        |
| 15 | The diversity and distribution of D1 proteins in cyanobacteria. Photosynthesis Research, 2020, 145, 111-128.                                                                                                   | 2.9  | 21        |
| 16 | Pseudocyphellaria crocata , P. neglecta and P. perpetua from the Northern and Southern Hemispheres<br>are a phylogenetic species and share cyanobionts. New Phytologist, 2006, 170, 597-607.                   | 7.3  | 18        |
| 17 | Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore <i>Emiliania huxleyi</i> . Global Change Biology, 2020, 26, 5630-5645.              | 9.5  | 17        |
| 18 | Environmental pH Affects Photoautotrophic Growth of Synechocystis sp. PCC 6803 Strains Carrying<br>Mutations in the Lumenal Proteins of PSII. Plant and Cell Physiology, 2013, 54, 859-874.                    | 3.1  | 15        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New<br>Zealand. PLoS ONE, 2017, 12, e0179652.                                                                                 | 2.5 | 15        |
| 20 | The importance of the hydrophilic region of PsbL for the plastoquinone electron acceptor complex of Photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1435-1446.                                  | 1.0 | 14        |
| 21 | Global gene expression of a ΔPsbO:ΔPsbU mutant and a spontaneous revertant in the cyanobacterium<br>Synechocystis sp. strain PCC 6803. Photosynthesis Research, 2007, 94, 265-274.                                         | 2.9 | 13        |
| 22 | Phenotypic variation in wild-type substrains of the model cyanobacterium <i>Synechocystis</i> sp. PCC 6803. New Zealand Journal of Botany, 2017, 55, 25-35.                                                                | 1.1 | 13        |
| 23 | The Sheep Genome Contributes to Localization of Control Elements in a Human Gene with Complex Regulatory Mechanisms. Genomics, 2001, 76, 9-13.                                                                             | 2.9 | 12        |
| 24 | Characterization of the cyanobacteria and associated bacterial community from an ephemeral wetland in New Zealand. Journal of Phycology, 2016, 52, 761-773.                                                                | 2.3 | 12        |
| 25 | Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site. Communications Biology, 2021, 4, 219.                                                                                                        | 4.4 | 12        |
| 26 | Gene expression indicates a zone of heterocyst differentiation within the thallus of the cyanolichen<br>Pseudocyphellaria crocata. New Phytologist, 2012, 196, 862-872.                                                    | 7.3 | 11        |
| 27 | Characterization of the mating-type locus (MAT) reveals a heterothallic mating system inKnightiella splachnirima. Lichenologist, 2017, 49, 373-385.                                                                        | 0.8 | 11        |
| 28 | Comparison of D1´―and D1â€containing PS II reaction centre complexes under different environmental conditions in <i>Synechocystis</i> sp. PCC 6803. Plant, Cell and Environment, 2016, 39, 1715-1726.                      | 5.7 | 10        |
| 29 | Mutation of Gly195 of the ChlH Subunit of Mg-chelatase Reduces Chlorophyll and Further Disrupts PS<br>II Assembly in a Ycf48-Deficient Strain of Synechocystis sp. PCC 6803. Frontiers in Plant Science, 2016, 7,<br>1060. | 3.6 | 9         |
| 30 | The PsbT protein modifies the bicarbonate-binding environment of Photosystem II. New Zealand Journal of Botany, 2020, 58, 406-421.                                                                                         | 1.1 | 9         |
| 31 | Subtle bacterioplankton community responses to elevated <scp>CO<sub>2</sub></scp> and warming in the oligotrophic South Pacific gyre. Environmental Microbiology Reports, 2020, 12, 377-386.                               | 2.4 | 9         |
| 32 | Purple haze: Cryptic purple sequestrate Cortinarius in New Zealand. Mycologia, 2020, 112, 588-605.                                                                                                                         | 1.9 | 9         |
| 33 | Multiple-stressor effects of dicyandiamide (DCD) and agricultural stressors on trait-based responses of stream benthic algal communities. Science of the Total Environment, 2019, 693, 133305.                             | 8.0 | 8         |
| 34 | The PsbJ protein is required for photosystem II activity in centers lacking the PsbO and PsbV lumenal subunits. Photosynthesis Research, 2022, 151, 103-111.                                                               | 2.9 | 7         |
| 35 | Environmental pH and the Requirement for the Extrinsic Proteins of Photosystem II in the Function of Cyanobacterial Photosynthesis. Frontiers in Plant Science, 2016, 7, 1135.                                             | 3.6 | 6         |
| 36 | Algal and cyanobacterial bioenergy and diversity. New Zealand Journal of Botany, 2014, 52, 1-5.                                                                                                                            | 1.1 | 5         |

TINA C SUMMERFIELD

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cyanobacteria in New Zealand indigenous grasslands. New Zealand Journal of Botany, 2014, 52, 100-115.                                                                                                                        | 1.1 | 5         |
| 38 | Introduction: proceedings of the 2015 New Zealand symposium on algae and photosynthetic prokaryotes. New Zealand Journal of Botany, 2017, 55, 1-4.                                                                           | 1.1 | 4         |
| 39 | Fungal diversity in canopy soil of silver beech, Nothofagus menziesiiÂ(Nothofagaceae). PLoS ONE, 2020,<br>15, e0227860.                                                                                                      | 2.5 | 4         |
| 40 | Studies of New Zealand <i>Cortinarius</i> : resolution of taxonomic conflicts in section<br><i>Subcastanelli</i> (Agaricales), new species and key to rozitoid species. New Zealand Journal of<br>Botany, 2021, 59, 457-475. | 1.1 | 4         |
| 41 | The gene for X-linked hypophosphataemic rickets maps to a 200-300 kb region in Xp22.1, and is located<br>on a single YAC containing a putative vitamin D response element (VDRE). Human Genetics, 1996, 97,<br>345-352.      | 3.8 | 4         |
| 42 | Characterisation of freshwater and marine cyanobacteria in the Hokianga region, Northland, New<br>Zealand. New Zealand Journal of Marine and Freshwater Research, 2014, 48, 177-193.                                         | 2.0 | 3         |
| 43 | <i>Cortinarius atropileatus</i> sp. nov. (Cortinariaceae) from New Zealand. New Zealand Journal of<br>Botany, 2019, 57, 50-61.                                                                                               | 1.1 | 3         |
| 44 | Editorial: Exploring the Growing Role of Cyanobacteria in Industrial Biotechnology and Sustainability. Frontiers in Microbiology, 2021, 12, 725128.                                                                          | 3.5 | 3         |
| 45 | Biology and biotechnological applications of microalgae and photosynthetic prokaryotes: part 2. New<br>Zealand Journal of Botany, 2020, 58, 275-333.                                                                         | 1.1 | 2         |
| 46 | Biology and biotechnological applications of microalgae and photosynthetic prokaryotes: Part 1. New<br>Zealand Journal of Botany, 2019, 57, 65-69.                                                                           | 1.1 | 1         |
| 47 | Environmental <scp>pH</scp> and a Glu364 to Gln mutation in the chlorophyllâ€binding<br><scp>CP</scp> 47 protein affect redoxâ€active TyrD and charge recombination in Photosystem II. FEBS<br>Letters, 2019, 593, 163-174.  | 2.8 | 1         |
| 48 | A molecular-genetic reassessment of the circumscription of the lichen genus Icmadophila.<br>Lichenologist, 2020, 52, 213-220.                                                                                                | 0.8 | 1         |
| 49 | Species turnover underpins the effect of elevated CO2 on biofilm communities through early succession. Climate Change Ecology, 2021, 2, 100017.                                                                              | 1.9 | 1         |
| 50 | Characterization of a pH-Sensitive Photosystem II Mutant in the Cyanobacterium Synechocystis sp. PCC 6803. Advanced Topics in Science and Technology in China, 2013, , 348-352.                                              | 0.1 | 0         |