Nina Sarnela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8078573/publications.pdf Version: 2024-02-01

NINA SADNELA

#	Article	IF	CITATIONS
1	Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest. Atmospheric Chemistry and Physics, 2022, 22, 2237-2254.	1.9	6
2	An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom. Atmospheric Chemistry and Physics, 2022, 22, 6365-6391.	1.9	6
3	Insufficient Condensable Organic Vapors Lead to Slow Growth of New Particles in an Urban Environment. Environmental Science & Technology, 2022, 56, 9936-9946.	4.6	19
4	Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
5	Long-term measurement of sub-3 nm particles and their precursor gases in the boreal forest. Atmospheric Chemistry and Physics, 2021, 21, 695-715.	1.9	14
6	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
7	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	1.5	70
8	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	1.5	53
9	Measurement report: Molecular composition and volatility of gaseous organic compounds in a boreal forest – from volatile organic compounds to highly oxygenated organic molecules. Atmospheric Chemistry and Physics, 2021, 21, 8961-8977.	1.9	12
10	Soft X-ray Atmospheric Pressure Photoionization in Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2021, 93, 9309-9313.	3.2	2
11	A modelling study of OH, NO ₃ and H ₂ SO ₄ in 2007–2018 at SMEAR II, Finland: analysis of long-term trends. Environmental Science Atmospheres, 2021, 1, 449-472.	0.9	1
12	Wintertime subarctic new particle formation from Kola Peninsula sulfur emissions. Atmospheric Chemistry and Physics, 2021, 21, 17559-17576.	1.9	9
13	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
14	Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations. Atmospheric Chemistry and Physics, 2020, 20, 11747-11766.	1.9	42
15	The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Nature Communications, 2019, 10, 4370.	5.8	91
16	Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station. Atmospheric Chemistry and Physics, 2019, 19, 10239-10256.	1.9	25
17	Evidence for Diverse Biogeochemical Drivers of Boreal Forest New Particle Formation. Geophysical Research Letters, 2018, 45, 2038-2046.	1.5	31
18	Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.	1.9	21

NINA SARNELA

#	Article	IF	CITATIONS
19	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	1.9	56
20	Observations of biogenic ion-induced cluster formation in the atmosphere. Science Advances, 2018, 4, eaar5218.	4.7	64
21	Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.	1.9	34
22	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
23	The role of H ₂ SO ₄ -NH <sub&a anion clusters in ion-induced aerosol nucleation mechanisms in the boreal forest. Atmospheric Chemistry and Physics 2018 18 13231-13243</sub&a 	mp;gt;3&	amp;lt;/sub&a
24	Modelling studies of HOMs and their contributions to new particle formation and growth: comparison of boreal forest in Finland and a polluted environment in China. Atmospheric Chemistry and Physics, 2018, 18, 11779-11791.	1.9	29
25	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
26	The role of highly oxygenated moleculesÂ(HOMs) in determining the composition of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2017, 17, 13819-13831.	1.9	66
27	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50
28	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	1.2	17
29	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	13.7	540
30	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	13.7	528
31	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	3.3	107
32	Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.	13.7	237
33	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	6.0	289
34	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	5.8	116
35	Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization. Atmospheric Chemistry and Physics, 2016, 16, 12715-12731.	1.9	118
36	Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies. Atmospheric Chemistry and Physics, 2015, 15, 3429-3443.	1.9	16

0

#	Article	IF	CITATIONS
37	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ –H <sub& and ternary (H₂SO₄–H<sub&< td=""><td>amp;gt;28 1.9 amp;gt;28</td><td>27 </td></sub&<></sub& 	amp;gt;28 1.9 amp;gt;28	27
38	Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment. Atmospheric Chemistry and Physics, 2015, 15, 11999-12009.	1.9	18
39	Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	1.9	17
40	Bisulfate – cluster based atmospheric pressure chemical ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-concept and first ambient data from boreal forest. Atmospheric Measurement Techniques, 2015, 8, 4001-4011.	1.2	30
41	Sizing of neutral sub 3nm tungsten oxide clusters using Airmodus Particle Size Magnifier. Journal of Aerosol Science, 2015, 87, 53-62.	1.8	37
42	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	4.6	51
43	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	3.3	208
44	The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene. Journal of the American Chemical Society, 2014, 136, 15596-15606.	6.6	236
45	Reactivity of stabilized Criegee intermediates (sCls) from isoprene and monoterpene ozonolysis toward SO ₂ and organic acids. Atmospheric Chemistry and Physics, 2014, 14, 12143-12153.	1.9	94
46	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	13.7	774
47	The particle size magnifier closing the gap between measurement of molecules, molecular clusters and aerosol particles. , 2013, , .		0

Sulphur dioxide and sulphuric acid concentrations in the vicinity of Kilpilahti industrial area. , 2013, , .