Kay Schneitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/807752/publications.pdf Version: 2024-02-01

KAN SCHNEITZ

#	Article	IF	CITATIONS
1	Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant Journal, 1995, 7, 731-749.	5.7	407
2	Mass-spectrometry-based draft of the Arabidopsis proteome. Nature, 2020, 579, 409-414.	27.8	328
3	The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta, 2002, 216, 187-192.	3.2	280
4	The molecular and genetic basis of ovule and megagametophyte development. Seminars in Cell and Developmental Biology, 1998, 9, 227-238.	5.0	186
5	Accurate and versatile 3D segmentation of plant tissues at cellular resolution. ELife, 2020, 9, .	6.0	155
6	STRUBBELIC defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9074-9079.	7.1	142
7	Pattern formation during early ovule development in Arabidopsis thaliana. Developmental Biology, 2004, 273, 321-334.	2.0	132
8	TheSTUDGene Is Required for Male-Specific Cytokinesis after Telophase II of Meiosis inArabidopsis thaliana. Developmental Biology, 1997, 187, 114-124.	2.0	116
9	The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2014, 141, 4139-4148.	2.5	88
10	DETORQUEO, QUIRKY, and ZERZAUST Represent Novel Components Involved in Organ Development Mediated by the Receptor-Like Kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genetics, 2009, 5, e1000355.	3.5	78
11	<i>NOZZLE</i> links proximal-distal and adaxial-abaxial pattern formation during ovule development in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2002, 129, 4291-4300.	2.5	74
12	Downregulation of the δ-Subunit Reduces Mitochondrial ATP Synthase Levels, Alters Respiration, and Restricts Growth and Gametophyte Development in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2792-2811.	6.6	66
13	The molecular and genetic control of ovule development. Current Opinion in Plant Biology, 1999, 2, 13-17.	7.1	65
14	Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana. BMC Plant Biology, 2007, 7, 16.	3.6	64
15	Organ Polarity in Arabidopsis. NOZZLE Physically Interacts with Members of the YABBY Family. Plant Physiology, 2004, 135, 2172-2185.	4.8	60
16	The Arabidopsis <i>HUELLENLOS</i> Gene, Which Is Essential for Normal Ovule Development, Encodes a Mitochondrial Ribosomal Protein. Plant Cell, 2001, 13, 2719-2730.	6.6	53
17	A digital 3D reference atlas reveals cellular growth patterns shaping the Arabidopsis ovule. ELife, 2021, 10, .	6.0	49
18	Structure-Function Analysis of STRUBBELIG, an Arabidopsis Atypical Receptor-Like Kinase Involved in Tissue Morphogenesis. PLoS ONE, 2011, 6, e19730.	2.5	45

KAY SCHNEITZ

#	Article	IF	CITATIONS
19	Using positional information to provide context for biological image analysis with MorphoGraphX 2.0. ELife, 2022, 11, .	6.0	41
20	The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in <i>Arabidopsis thaliana</i> . Development (Cambridge), 2017, 144, 2259-2269.	2.5	39
21	The Arabidopsis receptor-like kinase STRUBBELIC mediates inter-cell-layer signaling during floral development. Developmental Biology, 2008, 323, 261-270.	2.0	37
22	Regulation of planar growth by the <i>Arabidopsis</i> AGC protein kinase UNICORN. Proceedings of the United States of America, 2012, 109, 15060-15065.	7.1	34
23	The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency. PLoS Genetics, 2020, 16, e1008433.	3.5	33
24	ANGUSTIFOLIA is a central component of tissue morphogenesis mediated by the atypical receptor-like kinase STRUBBELIG. BMC Plant Biology, 2013, 13, 16.	3.6	30
25	Detection of mRNA Expression Patterns by Nonradioactive In Situ Hybridization on Histological Sections of Floral Tissue. Methods in Molecular Biology, 2014, 1110, 275-293.	0.9	30
26	NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development (Cambridge), 2002, 129, 4291-300.	2,5	30
27	Organogenesis in plants: the molecular and genetic control of ovule development. Trends in Plant Science, 1998, 3, 468-472.	8.8	29
28	Protocol for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by confocal laser scanning microscopy. Plant Methods, 2019, 15, 120.	4.3	29
29	The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis. Journal of Experimental Botany, 2019, 70, 3881-3894.	4.8	20
30	Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN. BMC Plant Biology, 2013, 13, 2.	3.6	16
31	The AGC protein kinase UNICORN controls planar growth by attenuating PDK1 in Arabidopsis thaliana. PLoS Genetics, 2019, 15, e1007927.	3.5	15
32	On the genetic control of planar growth during tissue morphogenesis in plants. Protoplasma, 2013, 250, 651-661.	2.1	10
33	The role of KDEL-tailed cysteine endopeptidases of Arabidopsis (AtCEP2 and AtCEP1) in root development. PLoS ONE, 2018, 13, e0209407.	2.5	10
34	Cell wall damage attenuates root hair patterning and tissue morphogenesis mediated by the receptor kinase STRUBBELIG. Development (Cambridge), 2021, 148, .	2.5	10
35	Pattern formation during early floral development. Current Opinion in Genetics and Development, 2015, 32, 16-23.	3.3	9
36	Shaping the genome of plants. ELife, 2020, 9, .	6.0	8

KAY SCHNEITZ

#	Article	IF	CITATIONS
37	Asymmetric Redundancy of <i>ZERZAUST</i> and <i>ZERZAUST HOMOLOG</i> in Different Accessions of <i>Arabidopsis thaliana</i> . G3: Genes, Genomes, Genetics, 2019, 9, 2245-2252.	1.8	7
38	The Genetic Control of Ovule Development. , 2018, , .		6
39	Inter-cell-layer signalling during <i>Arabidopsis</i> ovule development mediated by the receptor-like kinase STRUBBELIC. Biochemical Society Transactions, 2010, 38, 583-587.	3.4	5
40	Microscopic Analysis of Arabidopsis Ovules. Methods in Molecular Biology, 2014, 1110, 253-261.	0.9	4
41	Using Steady-State Fluorescence Anisotropy to Study Protein Clustering. Methods in Molecular Biology, 2022, 2457, 253-260.	0.9	4
42	The annotation and analysis of complex 3D plant organs using 3DCoordX. Plant Physiology, 2022, 189, 1278-1295.	4.8	4
43	Microscopic Analysis of Ovule Development in Arabidopsis thaliana. Methods in Molecular Biology, 2013, 959, 127-135.	0.9	3
44	The Role of Auxin for Reproductive Organ Patterning and Development. , 2014, , 213-243.		3
45	The Arabidopsis HUELLENLOS Gene, Which Is Essential for Normal Ovule Development, Encodes a Mitochondrial Ribosomal Protein. Plant Cell, 2001, 13, 2719.	6.6	О