Wolfgang F Graier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8077151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. Journal of Cell Science, 2004, 117, 1319-1328.	1.2	314
2	Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport. Nature Cell Biology, 2007, 9, 445-452.	4.6	307
3	Coassembly of Trp1 and Trp3 Proteins Generates Diacylglycerol- and Ca2+-sensitive Cation Channels. Journal of Biological Chemistry, 2000, 275, 27799-27805.	1.6	264
4	Cytochrome P450 monoâ€oxygenaseâ€regulated signalling of Ca2+ entry in human and bovine endothelial cells Journal of Physiology, 1995, 482, 259-274.	1.3	196
5	Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca++/NFAT. Blood, 2002, 99, 199-206.	0.6	185
6	Sustained Ca2+ Transfer across Mitochondria Is Essential for Mitochondrial Ca2+ Buffering, Store-operated Ca2+ Entry, and Ca2+ Store Refilling. Journal of Biological Chemistry, 2003, 278, 44769-44779.	1.6	170
7	Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. Journal of Cell Science, 2008, 121, 1704-1717.	1.2	160
8	Vascular targets of redox signalling in diabetes mellitus. Diabetologia, 2002, 45, 476-494.	2.9	142
9	The Role of Mitochondria for Ca2+ Refilling of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2005, 280, 12114-12122.	1.6	139
10	The C-terminal Region of Human Adipose Triglyceride Lipase Affects Enzyme Activity and Lipid Droplet Binding. Journal of Biological Chemistry, 2008, 283, 17211-17220.	1.6	133
11	Cytosolic Aspartate Availability Determines Cell Survival When Glutamine Is Limiting. Cell Metabolism, 2018, 28, 706-720.e6.	7.2	132
12	Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nature Communications, 2017, 8, 1422.	5.8	130
13	Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Archiv European Journal of Physiology, 2007, 455, 375-396.	1.3	127
14	Mitochondrial Ca2+ Uptake 1 (MICU1) and Mitochondrial Ca2+ Uniporter (MCU) Contribute to Metabolism-Secretion Coupling in Clonal Pancreatic β-Cells. Journal of Biological Chemistry, 2012, 287, 34445-34454.	1.6	120
15	Inhibition of Autophagy Rescues Palmitic Acid-induced Necroptosis of Endothelial Cells. Journal of Biological Chemistry, 2012, 287, 21110-21120.	1.6	118
16	2-Chlorohexadecanal Derived From Hypochlorite-Modified High-Density Lipoprotein–Associated Plasmalogen Is a Natural Inhibitor of Endothelial Nitric Oxide Biosynthesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2302-2306.	1.1	113
17	Anandamide initiates Ca2+ signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. British Journal of Pharmacology, 2003, 140, 1351-1362.	2.7	104
18	pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments. ACS Sensors, 2019, 4, 883-891.	4.0	99

#	Article	IF	CITATIONS
19	Endothelial mitochondria—less respiration, more integration. Pflugers Archiv European Journal of Physiology, 2012, 464, 63-76.	1.3	96
20	Vascular Effects of l-Arginine: Anything beyond a Substrate for the NO-Synthase?. Biochemical and Biophysical Research Communications, 1997, 234, 35-38.	1.0	94
21	Submaximal stimulation of porcine endothelial cells causes focal Ca2+elevation beneath the cell membrane. Journal of Physiology, 1998, 506, 109-125.	1.3	92
22	Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells. Cell Reports, 2018, 25, 501-512.e3.	2.9	91
23	MICU1 controls cristae junction and spatially anchors mitochondrial Ca2+ uniporter complex. Nature Communications, 2019, 10, 3732.	5.8	90
24	Leucine Zipper EF Hand-containing Transmembrane Protein 1 (Letm1) and Uncoupling Proteins 2 and 3 (UCP2/3) Contribute to Two Distinct Mitochondrial Ca2+ Uptake Pathways. Journal of Biological Chemistry, 2011, 286, 28444-28455.	1.6	86
25	<scp>RNA</scp> editing of Filamin A pre― <scp>mRNA</scp> regulates vascular contraction and diastolic blood pressure. EMBO Journal, 2018, 37, .	3.5	86
26	Mitochondria Efficiently Buffer Subplasmalemmal Ca2+Elevation during Agonist Stimulation. Journal of Biological Chemistry, 2003, 278, 10807-10815.	1.6	84
27	Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nature Communications, 2016, 7, 10623.	5.8	84
28	Resveratrol Specifically Kills Cancer Cells by a Devastating Increase in the Ca2+ Coupling Between the Greatly Tethered Endoplasmic Reticulum and Mitochondria. Cellular Physiology and Biochemistry, 2016, 39, 1404-1420.	1.1	84
29	Alterations in platelet Ca 2+ signalling in diabetic patients is due to increased formation of superoxide anions and reduced nitric oxide production. Diabetologia, 1999, 42, 167-176.	2.9	80
30	Anandamide-induced mobilization of cytosolic Ca2+ in endothelial cells. British Journal of Pharmacology, 1999, 126, 1593-1600.	2.7	77
31	Human diabetes is associated with hyperreactivity of vascular smooth muscle cells due to altered subcellular Ca2+ distribution. Diabetes, 1999, 48, 1323-1330.	0.3	76
32	Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. Journal of Cell Science, 2010, 123, 2553-2564.	1.2	76
33	HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Science Translational Medicine, 2020, 12, .	5.8	75
34	Histamineâ€induced Ca 2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca 2+ â€ATPase. Journal of Physiology, 2000, 524, 701-713.	1.3	73
35	Increased superoxide anion formation in endothelial cells during hyperglycemia: an adaptive response or initial step of vascular dysfunction?. Diabetes Research and Clinical Practice, 1999, 45, 153-160.	1.1	71
36	Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells, 2019, 8, 492.	1.8	71

#	Article	IF	CITATIONS
37	Activation of microsomal cytochrome P450 mono-oxygenase by Ca2+ store depletion and its contribution to Ca2+ entry in porcine aortic endothelial cells. British Journal of Pharmacology, 1997, 121, 1579-1588.	2.7	68
38	Activation of a small-conductance Ca2+-dependent K+ channel contributes to bradykinin-induced stimulation of nitric oxide synthesis in pig aortic endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1137, 162-170.	1.9	67
39	Triacylglycerol Accumulation Activates the Mitochondrial Apoptosis Pathway in Macrophages. Journal of Biological Chemistry, 2011, 286, 7418-7428.	1.6	66
40	Lysophosphatidic acid receptor activation affects the C13NJ microglia cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture. Proteomics, 2010, 10, 141-158.	1.3	65
41	Adaptations of Energy Metabolism Associated with Increased Levels of Mitochondrial Cholesterol in Niemann-Pick Type C1-deficient Cells. Journal of Biological Chemistry, 2014, 289, 16278-16289.	1.6	65
42	ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca ²⁺ release. Molecular Biology of the Cell, 2014, 25, 368-379.	0.9	65
43	Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. Journal of Cell Science, 2008, 121, 3133-3139.	1.2	62
44	The contribution of UCP2 and UCP3 to mitochondrial Ca2+ uptake is differentially determined by the source of supplied Ca2+. Cell Calcium, 2010, 47, 433-440.	1.1	59
45	GPR55â€dependent and â€independent ion signalling in response to lysophosphatidylinositol in endothelial cells. British Journal of Pharmacology, 2010, 161, 308-320.	2.7	59
46	PRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca2+ uptake in immortalized cells. Nature Communications, 2016, 7, 12897.	5.8	59
47	Mitochondrial Ca2+, the secret behind the function of uncoupling proteins 2 and 3?. Cell Calcium, 2008, 44, 36-50.	1.1	58
48	Diabetic LDL Triggers Apoptosis in Vascular Endothelial Cells. Diabetes, 2003, 52, 1240-1247.	0.3	57
49	Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. International Journal of Molecular Sciences, 2019, 20, 6110.	1.8	56
50	Glycated low-density lipoprotein attenuates shear stress-induced nitric oxide synthesis by inhibition of shear stress-activated L-arginine uptake in endothelial cells. Diabetes, 1999, 48, 1331-1337.	0.3	55
51	C16 ceramide is crucial for triacylglycerol-induced apoptosis in macrophages. Cell Death and Disease, 2012, 3, e280-e280.	2.7	55
52	Intracellular mechanism of highd-glucose-induced modulation of vascular cell proliferation. European Journal of Pharmacology, 1995, 294, 221-229.	1.7	53
53	UCP2/3 — likely to be fundamental for mitochondrial Ca2+ uniport. Nature Cell Biology, 2008, 10, 1237-1240.	4.6	53
54	Vesicular Calcium Regulates Coat Retention, Fusogenicity, and Size of Pre-Golgi Intermediates. Molecular Biology of the Cell, 2010, 21, 1033-1046.	0.9	52

#	Article	IF	CITATIONS
55	NAT8L (N-Acetyltransferase 8-Like) Accelerates Lipid Turnover and Increases Energy Expenditure in Brown Adipocytes. Journal of Biological Chemistry, 2013, 288, 36040-36051.	1.6	52
56	11,12-Epoxyeicosatrienoic acid stimulates tyrosine kinase activity in porcine aortic endothelial cells. European Journal of Pharmacology, 1998, 346, 115-117.	1.7	51
57	Effects of Superoxide Anions on Endothelial Ca ²⁺ Signaling Pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1470-1479.	1.1	51
58	Hyperglycemic Conditions Affect Shape and Ca2+ Homeostasis of Mitochondria in Endothelial Cells. Journal of Cardiovascular Pharmacology, 2004, 44, 423-436.	0.8	51
59	Mg2+ Deprivation Elicits Rapid Ca2+ Uptake and Activates Ca2+/Calcineurin Signaling in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 592-599.	3.4	51
60	Lysophosphatidic acid via LPA-receptor 5/protein kinase D-dependent pathways induces a motile and pro-inflammatory microglial phenotype. Journal of Neuroinflammation, 2017, 14, 253.	3.1	51
61	Inositol-1,4,5-trisphosphate (IP3)-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. Journal of Cell Science, 2014, 127, 2944-55.	1.2	50
62	Enhanced inter-compartmental Ca2+ flux modulates mitochondrial metabolism and apoptotic threshold during aging. Redox Biology, 2019, 20, 458-466.	3.9	50
63	Cholesterol- and caveolin-rich membrane domains are essential for phospholipase A-dependent EDHF formation. Cardiovascular Research, 2004, 64, 234-242.	1.8	49
64	Ca2+Regulation and Endothelial Vascular Function. Endothelium: Journal of Endothelial Cell Research, 1994, 1, 223-236.	1.7	48
65	ORIGIN AND FUNCTION OF EPOXYEICOSATRIENOIC ACIDS IN VASCULAR ENDOTHELIAL CELLS: MORE THAN JUST ENDOTHELIUM-DERIVED HYPERPOLARIZING FACTOR?. Clinical and Experimental Pharmacology and Physiology, 1998, 25, 826-830.	0.9	48
66	Studying mitochondrial Ca2+ uptake – A revisit. Molecular and Cellular Endocrinology, 2012, 353, 114-127.	1.6	48
67	Selective stimulation of L-arginine uptake contributes to shear stress-induced formation of nitric oxide. Life Sciences, 1999, 64, 663-670.	2.0	47
68	Acyl chain-dependent effect of lysophosphatidylcholine on endothelial prostacyclin production. Journal of Lipid Research, 2010, 51, 2957-2966.	2.0	47
69	Rearrangement of MICU1 multimers for activation of MCU is solely controlled by cytosolic Ca2+. Scientific Reports, 2015, 5, 15602.	1.6	45
70	Free Fatty Acid Overload Attenuates Ca2+ Signaling and NO Production in Endothelial Cells. Antioxidants and Redox Signaling, 2003, 5, 147-153.	2.5	44
71	TRPV1 mediates cellular uptake of anandamide and thus promotes endothelial cell proliferation and network-formation. Biology Open, 2014, 3, 1164-1172.	0.6	43
72	Stealth ryanodine-sensitive Ca2+release contributes to activity of capacitative Ca2+entry and nitric oxide synthase in bovine endothelial cells. Journal of Physiology, 1998, 513, 369-379.	1.3	42

#	Article	IF	CITATIONS
73	Twenty Years of Calcium Imaging: Cell Physiology to Dye For. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 112-127.	3.4	42
74	Effect of sodium fluoride on cytosolic free Ca2+- concentrations and cGMP-levels in endothelial cells. Cellular Signalling, 1990, 2, 369-375.	1.7	41
75	Spatiotemporal Correlations between Cytosolic and Mitochondrial Ca2+ Signals Using a Novel Red-Shifted Mitochondrial Targeted Cameleon. PLoS ONE, 2012, 7, e45917.	1.1	41
76	Dosis Facit Sanitatem—Concentration-Dependent Effects of Resveratrol on Mitochondria. Nutrients, 2017, 9, 1117.	1.7	41
77	Live cell imaging of signaling and metabolic activities. , 2019, 202, 98-119.		41
78	Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium, 2007, 41, 63-76.	1.1	40
79	Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes, 2018, 9, 165.	1.0	40
80	Nonclassical nuclear localization signals mediate nuclear import of CIRBP. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8503-8514.	3.3	40
81	Activation of soluble guanylate cyclase by nitrovasodilators is inhibited by oxidized low-density lipoprotein. Biochemical and Biophysical Research Communications, 1990, 172, 614-619.	1.0	38
82	T-Cadherin Mediates Low-Density Lipoprotein-Initiated Cell Proliferation Via the Ca2+-Tyrosine Kinase-Erk1/2 Pathway. Journal of Cardiovascular Pharmacology, 2005, 45, 418-430.	0.8	38
83	Mitochondrial Ca ²⁺ channels: Great unknowns with important functions. FEBS Letters, 2010, 584, 1942-1947.	1.3	38
84	The enigmatic ATP supply of the endoplasmic reticulum. Biological Reviews, 2019, 94, 610-628.	4.7	38
85	Subplasmalemmal endoplasmic reticulum controls KCachannel activity upon stimulation with a moderate histamine concentration in a human umbilical vein endothelial cell line. Journal of Physiology, 2002, 540, 73-84.	1.3	37
86	Characterization of distinct single-channel properties of Ca2+ inward currents in mitochondria. Pflugers Archiv European Journal of Physiology, 2013, 465, 997-1010.	1.3	37
87	Lysosomal acid lipase regulates VLDL synthesis and insulin sensitivity in mice. Diabetologia, 2016, 59, 1743-1752.	2.9	37
88	N-acetylaspartate pathway is nutrient responsive and coordinates lipid and energy metabolism in brown adipocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 337-348.	1.9	37
89	N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes. Scientific Reports, 2016, 6, 23723.	1.6	36
90	Genetic biosensors for imaging nitric oxide in single cells. Free Radical Biology and Medicine, 2018, 128, 50-58.	1.3	36

#	Article	IF	CITATIONS
91	Nitric oxide inhibits capacitative Ca2+entry by suppression of mitochondrial Ca2+handling. British Journal of Pharmacology, 2002, 137, 821-830.	2.7	35
92	Acyl chain-dependent effect of lysophosphatidylcholine on cyclooxygenase (COX)-2 expression in endothelial cells. Atherosclerosis, 2012, 224, 348-354.	0.4	35
93	Docosahexaenoic acid-induced unfolded protein response, cell cycle arrest, and apoptosis in vascular smooth muscle cells are triggered by Ca2+-dependent induction of oxidative stress. Free Radical Biology and Medicine, 2012, 52, 1786-1795.	1.3	35
94	miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 827-835.	1.2	35
95	MiR-206 is expressed in pancreatic islets and regulates glucokinase activity. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E175-E185.	1.8	35
96	Monoglyceride lipase deficiency modulates endocannabinoid signaling and improves plaque stability in ApoE-knockout mice. Atherosclerosis, 2016, 244, 9-21.	0.4	35
97	The Role of PGE2 in Alveolar Epithelial and Lung Microvascular Endothelial Crosstalk. Scientific Reports, 2017, 7, 7923.	1.6	35
98	Mechanisms of Lâ€N ^G nitroarginine/indomethacinâ€resistant relaxation in bovine and porcine coronary arteries. British Journal of Pharmacology, 1996, 119, 1177-1186.	2.7	34
99	The GPR55 agonist lysophosphatidylinositol acts as an intracellular messenger and bidirectionally modulates Ca2+-activated large-conductance K+ channels in endothelial cells. Pflugers Archiv European Journal of Physiology, 2011, 461, 177-189.	1.3	34
100	Molecularly Distinct Routes of Mitochondrial Ca2+ Uptake Are Activated Depending on the Activity of the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA). Journal of Biological Chemistry, 2013, 288, 15367-15379.	1.6	34
101	The GPR55 agonist lysophosphatidylinositol directly activates intermediate-conductance Ca2+-activated K+ channels. Pflugers Archiv European Journal of Physiology, 2011, 462, 245-255.	1.3	33
102	Acyl Chain-Dependent Effect of Lysophosphatidylcholine on Endothelium-Dependent Vasorelaxation. PLoS ONE, 2013, 8, e65155.	1.1	32
103	SK&F 96365 inhibits histamine-induced formation of endothelium-derived relaxing factor in human endothelial cells. Biochemical and Biophysical Research Communications, 1992, 186, 1539-1545.	1.0	31
104	Intracellular Mechanisms Involved in D-Glucose–Mediated Amplification of Agonist-Induced Ca2+Response and EDRF Formation in Vascular Endothelial Cells. Diabetes, 1994, 43, 984-991.	0.3	31
105	Formation of Nitric Oxide by Aldehyde Dehydrogenase-2 Is Necessary and Sufficient for Vascular Bioactivation of Nitroglycerin. Journal of Biological Chemistry, 2016, 291, 24076-24084.	1.6	31
106	High-density lipoprotein antagonizes the inhibitory effects of oxidized low-density lipoprotein and lysolecithin on soluble guanylyl cyclase. Biochemical and Biophysical Research Communications, 1992, 182, 302-308.	1.0	30
107	Subplasmalemmal ryanodineâ€sensitive Ca 2+ release contributes to Ca 2+ â€dependent K + channel activation in a human umbilical vein endothelial cell line. Journal of Physiology, 2000, 524, 715-724.	1.3	30
108	Aspirin Inhibits Chlamydia pneumoniae –Induced Nuclear Factor-κB Activation, Cytokine Expression, and Bacterial Development in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1075-1080.	1.1	30

#	Article	IF	CITATIONS
109	Uncoupling protein 3 adjusts mitochondrial Ca2+ uptake to high and low Ca2+ signals. Cell Calcium, 2010, 48, 288-301.	1.1	30
110	Intercellular signalling within vascular cells under high D-glucose involves free radical-triggered tyrosine kinase activation. Diabetologia, 2003, 46, 773-783.	2.9	29
111	Mitochondrial Ca2+ uniporter (MCU)-dependent and MCU-independent Ca2+ channels coexist in the inner mitochondrial membrane. Pflugers Archiv European Journal of Physiology, 2014, 466, 1411-1420.	1.3	29
112	The <scp>GPR</scp> 55 agonist, <scp>L</scp> â€Î±â€lysophosphatidylinositol, mediates ovarian carcinoma cellâ€induced angiogenesis. British Journal of Pharmacology, 2015, 172, 4107-4118.	2.7	29
113	UCP2 modulates single-channel properties of a MCU-dependent Ca2+ inward current in mitochondria. Pflugers Archiv European Journal of Physiology, 2015, 467, 2509-2518.	1.3	28
114	Intact mitochondrial Ca 2+ uniport is essential for agonist-induced activation of endothelial nitric oxide synthase (eNOS). Free Radical Biology and Medicine, 2017, 102, 248-259.	1.3	28
115	2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells. Redox Biology, 2018, 15, 441-451.	3.9	28
116	Lipid-independent control of endothelial and neuronal TRPC3 channels by light. Chemical Science, 2019, 10, 2837-2842.	3.7	28
117	Temperature dependence of agonist-stimulated Ca2+ signaling in cultured endothelial cells. Cell Calcium, 1997, 21, 43-51.	1.1	27
118	A New Type of Non-Ca2+-buffering Apo(a)-based Fluorescent Indicator for Intraluminal Ca2+ in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2006, 281, 5017-5025.	1.6	27
119	Deletion of CGI-58 or adipose triglyceride lipase differently affects macrophage function and atherosclerosis. Journal of Lipid Research, 2014, 55, 2562-2575.	2.0	27
120	Lysosomal acid lipase regulates fatty acid channeling in brown adipose tissue to maintain thermogenesis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 467-478.	1.2	27
121	Generation of Red-Shifted Cameleons for Imaging Ca2+ Dynamics of the Endoplasmic Reticulum. Sensors, 2015, 15, 13052-13068.	2.1	26
122	Critical role of the peroxisomal protein PEX16 in white adipocyte development and lipid homeostasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 358-368.	1.2	26
123	ATGL/CGI-58-Dependent Hydrolysis of a Lipid Storage Pool in Murine Enterocytes. Cell Reports, 2019, 28, 1923-1934.e4.	2.9	26
124	Is the bradykinin-induced Ca2+ influx and the formation of endothelium-derived relaxing factor mediated by a G protein?. European Journal of Pharmacology, 1992, 225, 43-49.	2.7	25
125	Tissue-specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice. British Journal of Pharmacology, 2002, 135, 143-154.	2.7	25
126	N â€arachidonoyl glycine suppresses Na + / Ca 2+ exchangerâ€mediated Ca 2+ entry into endothelial cells and activates BK Ca channels ind. British Journal of Pharmacology, 2013, 169, 933-948.	2.7	25

#	Article	IF	CITATIONS
127	Glycogen Synthase Kinase 3 Beta Controls Presenilin-1-Mediated Endoplasmic Reticulum Ca2+ Leak Directed to Mitochondria in Pancreatic Islets and beta-Cells. Cellular Physiology and Biochemistry, 2019, 52, 57-75.	1.1	25
128	Intracellular Ca2+ release decelerates mitochondrial cristae dynamics within the junctions to the endoplasmic reticulum. Pflugers Archiv European Journal of Physiology, 2018, 470, 1193-1203.	1.3	24
129	Evidence for a receptor-activated Ca2+ entry pathway independent from Ca2+ store depletion in endothelial cells. Cell Calcium, 2008, 43, 83-94.	1.1	23
130	Mitochondrial protein phosphorylation: instigator or target of lipotoxicity?. Trends in Endocrinology and Metabolism, 2009, 20, 186-193.	3.1	23
131	The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by abrogating STIM1/Orai1 interaction. Journal of Cell Science, 2013, 126, 879-88.	1.2	23
132	Tracking intra―and interâ€organelle signaling of mitochondria. FEBS Journal, 2019, 286, 4378-4401.	2.2	23
133	Potentiation of Ca2+ Signaling in Endothelial Cells by 11,12-Epoxyeicosatrienoic Acid. Journal of Cardiovascular Pharmacology, 1999, 33, 779-784.	0.8	23
134	Antioxidants prevent high-d-glucose-enhanced endothelial Ca2+/cGMP response by scavenging superoxide anions. European Journal of Pharmacology, 1997, 322, 113-122.	1.7	22
135	Mechanisms of Ca2+store depletion in single endothelial cells in a Ca2+-free environment. Cell Calcium, 1999, 25, 345-353.	1.1	22
136	Active autophagy but not lipophagy in macrophages with defective lipolysis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1304-1316.	1.2	22
137	Real-time visualization of distinct nitric oxide generation of nitric oxide synthase isoforms in single cells. Nitric Oxide - Biology and Chemistry, 2017, 70, 59-67.	1.2	22
138	Big conductance calciumâ€activated potassium channel openers control spasticity without sedation. British Journal of Pharmacology, 2017, 174, 2662-2681.	2.7	22
139	Diacylglycerol triggers Rim101 pathway–dependent necrosis in yeast: a model for lipotoxicity. Cell Death and Differentiation, 2018, 25, 767-783.	5.0	22
140	Functional Analysis Of Histamine Receptor Subtypes Involved In Endothelium-Mediated Relaxation Of The Human Uterine Artery. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 711-716.	0.9	20
141	Visualization of Sirtuin 4 Distribution between Mitochondria and the Nucleus, Based on Bimolecular Fluorescence Self-Complementation. Cells, 2019, 8, 1583.	1.8	20
142	Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control. FEBS Journal, 2021, 288, 3834-3854.	2.2	20
143	UCP2 and PRMT1 are key prognostic markers for lung carcinoma patients. Oncotarget, 2017, 8, 80278-80285.	0.8	20
144	Mitochondria maintain maturation and secretion of lipoprotein lipase in the endoplasmic reticulum. Biochemical Journal, 2006, 396, 173-182.	1.7	19

#	Article	IF	CITATIONS
145	The vascular barrier-protecting hawthorn extract WS® 1442 raises endothelial calcium levels by inhibition of SERCA and activation of the IP3 pathway. Journal of Molecular and Cellular Cardiology, 2012, 53, 567-577.	0.9	18
146	Dynamic Control of Mitochondrial Ca2+ Levels as a Survival Strategy of Cancer Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 614668.	1.8	18
147	IRE1α modulates ER and mitochondria crosstalk. Nature Cell Biology, 2019, 21, 667-668.	4.6	17
148	Effect of intracellular Ca2+concentration on endothelin-1 secretion. FEBS Letters, 1994, 350, 33-36.	1.3	16
149	Oleoyl-Lysophosphatidylcholine Limits Endothelial Nitric Oxide Bioavailability by Induction of Reactive Oxygen Species. PLoS ONE, 2014, 9, e113443.	1.1	16
150	Application of Genetically Encoded Fluorescent Nitric Oxide (NO•) Probes, the geNOps, for Real-time Imaging of NO• Signals in Single Cells. Journal of Visualized Experiments, 2017, , .	0.2	16
151	The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca2+ Entry. Advances in Experimental Medicine and Biology, 2017, 993, 297-319.	0.8	16
152	Mitochondrial–Endoplasmic Reticulum Interplay: A Lifelong On–Off Relationship?. Contact (Thousand) Tj ETQ	2q0,00 rg	BT /Overlock
	Sigma 1 Pecantor Dromotos Mitochondrial Biognargatics by Orchastrating EP Ca2 , Look during Early		

153	ER Stress. Metabolites, 2021, 11, 422.	1.3	16
154	In human hypercholesterolemia increased reactivity of vascular smooth muscle cells is due to altered subcellular Ca2+ distribution. Atherosclerosis, 2000, 149, 33-42.	0.4	15
155	The contribution of uncoupling protein 2 to mitochondrial Ca2+ homeostasis in health and disease – A short revisit. Mitochondrion, 2020, 55, 164-173.	1.6	15
156	Presenilin-1 Established ER-Ca2+ Leak: a Follow Up on Its Importance for the Initial Insulin Secretion in Pancreatic Islets and β-Cells Upon Elevated Glucose. Cellular Physiology and Biochemistry, 2019, 53, 573-586.	1.1	15
157	Survey of Molecular Mechanisms of Hyperbaric Oxygen in Tissue Repair. International Journal of Molecular Sciences, 2021, 22, 11754.	1.8	14
158	Cristae junction as a fundamental switchboard for mitochondrial ion signaling and bioenergetics. Cell Calcium, 2022, 101, 102517.	1.1	13
159	Stimulation of Soluble Guanylate Cyclase by Endothelium-Derived Relaxing Factor Is Antagonized by Oxidized Low-Density Lipoprotein. Journal of Cardiovascular Pharmacology, 1991, 17, S83-S88.	0.8	12
160	Potassium ions promote hexokinase-II dependent glycolysis. IScience, 2021, 24, 102346.	1.9	12
161	Hydrogen Peroxide Activates Na+-Dependent Ca2+ Influx in Coronary Endothelial Cells. Biochemical and Biophysical Research Communications, 2001, 287, 1134-1139.	1.0	11
162	Characterization of rat serum amyloid A4 (SAA4): A novel member of the SAA superfamily. Biochemical and Biophysical Research Communications, 2014, 450, 1643-1649.	1.0	11

#	Article	IF	CITATIONS
163	Development and Application of Sub-Mitochondrial Targeted Ca2 + Biosensors. Frontiers in Cellular Neuroscience, 2019, 13, 449.	1.8	11
164	Myeloperoxidase and Septic Conditions Disrupt Sphingolipid Homeostasis in Murine Brain Capillaries In Vivo and Immortalized Human Brain Endothelial Cells In Vitro. International Journal of Molecular Sciences, 2020, 21, 1143.	1.8	11
165	PCK2 opposes mitochondrial respiration and maintains the redox balance in starved lung cancer cells. Free Radical Biology and Medicine, 2021, 176, 34-45.	1.3	11
166	ALC-2 and peflin regulate COPII targeting and secretion in response to calcium signaling. Journal of Biological Chemistry, 2021, 297, 101393.	1.6	11
167	MICU1 controls spatial membrane potential gradients and guides Ca2+ fluxes within mitochondrial substructures. Communications Biology, 2022, 5, .	2.0	11
168	Enhanced Ca ²⁺ Entry and Tyrosine Phosphorylation Mediate Nanostructure-Induced Endothelial Proliferation. Journal of Nanomaterials, 2013, 2013, 1-10.	1.5	10
169	Lysophosphatidic Acid Induces Aerobic Glycolysis, Lipogenesis, and Increased Amino Acid Uptake in BV-2 Microglia. International Journal of Molecular Sciences, 2021, 22, 1968.	1.8	10
170	Immobilization of Recombinant Fluorescent Biosensors Permits Imaging of Extracellular Ion Signals. ACS Sensors, 2021, 6, 3994-4000.	4.0	10
171	Activation of G Protein Evokes Ca2+ Influx in Endothelial Cells Without Correlation to Inositol Phosphates. Journal of Cardiovascular Pharmacology, 1991, 17, S71-S78.	0.8	9
172	ER-to-Golgi Transport in HeLa Cells Displays High Resilience to Ca2+ and Energy Stresses. Cells, 2020, 9, 2311.	1.8	9
173	Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps. Methods in Molecular Biology, 2018, 1747, 23-34.	0.4	8
174	Endothelial lipase increases eNOS activating capacity of high-density lipoprotein. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158612.	1.2	8
175	Effect of hypoxia factors gene silencing on ROS production and metabolic status of A375 malignant melanoma cells. Scientific Reports, 2021, 11, 10325.	1.6	8
176	T3-induced enhancement of mitochondrial Ca2+ uptake as a boost for mitochondrial metabolism. Free Radical Biology and Medicine, 2022, 181, 197-208.	1.3	8
177	Sustained Formation of Nitroglycerin-Derived Nitric Oxide by Aldehyde Dehydrogenase-2 in Vascular Smooth Muscle without Added Reductants: Implications for the Development of Nitrate Tolerance. Molecular Pharmacology, 2018, 93, 335-343.	1.0	7
178	<i>N</i> â€acetylaspartate availability is essential for juvenile survival on fatâ€free diet and determines metabolic health. FASEB Journal, 2019, 33, 13808-13824.	0.2	6
179	Near-UV Light Induced ROS Production Initiates Spatial Ca2+ Spiking to Fire NFATc3 Translocation. International Journal of Molecular Sciences, 2021, 22, 8189.	1.8	6
180	Mitochondrial calcium: a crucial hub for cancer cell metabolism?. Translational Cancer Research, 2017, 6, S1124-S1127.	0.4	6

#	Article	IF	CITATIONS
181	Citrin mediated metabolic rewiring in response to altered basal subcellular Ca2+ homeostasis. Communications Biology, 2022, 5, 76.	2.0	6
182	Different Roles of p62 (SQSTM1) Isoforms in Keratin-Related Protein Aggregation. International Journal of Molecular Sciences, 2021, 22, 6227.	1.8	5
183	The Effects of Intracellular Ca2+ Concentration and Hypoxia on Basal Endothelin-1 Secretion by Cultured Porcine Aortic Endothelial Cells. , 1995, 45, 269-273.		5
184	Endothelial H 2 O 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1691-1693.	1.1	4
185	Metabolism–Secretion Coupling and Mitochondrial Calcium Activities in Clonal Pancreatic β-Cells. Vitamins and Hormones, 2014, 95, 63-86.	0.7	4
186	Assessment of Mitochondrial Ca2+ Uptake. Methods in Molecular Biology, 2015, 1264, 421-439.	0.4	4
187	Hypoxia factors suppression effect on the energy metabolism of a malignant melanoma cell SK-MEL-30. European Review for Medical and Pharmacological Sciences, 2020, 24, 4909-4920.	0.5	4
188	Investigating the K+ sensitivity of cellular metabolism by extracellular flux analysis. STAR Protocols, 2021, 2, 100876.	0.5	4
189	Lysophosphatidic Acid Receptor 5 (LPA5) Knockout Ameliorates the Neuroinflammatory Response In Vivo and Modifies the Inflammatory and Metabolic Landscape of Primary Microglia In Vitro. Cells, 2022, 11, 1071.	1.8	4
190	Sigma-1 Receptor Modulation by Ligands Coordinates Cancer Cell Energy Metabolism. Biomolecules, 2022, 12, 762.	1.8	4
191	Activation of endothelial nitric oxide synthase by the pro-apoptotic drug embelin: Striking discrepancy between nitric oxide-mediated cyclic GMP accumulation and l-citrulline formation. Nitric Oxide - Biology and Chemistry, 2010, 22, 281-289.	1.2	3
192	Purification and Application of Genetically Encoded Potassium Ion Indicators for Quantification of Potassium Ion Concentrations within Biological Samples. Current Protocols in Chemical Biology, 2019, 11, e71.	1.7	3
193	Adipose Triglyceride Lipase Deficiency Attenuates In Vitro Thrombus Formation without Affecting Platelet Activation and Bleeding In Vivo. Cells, 2022, 11, 850.	1.8	3
194	Mitochondrial Ca2+ uptake 1 (MICU1) and mitochondrial Ca2+ uniporter (MCU) contribute to metabolism-secretion coupling in clonal pancreatic β-cells Journal of Biological Chemistry, 2012, 287, 42453.	1.6	2
195	Filling a GAP—An Optimized Probe for ER Ca 2+ Imaging InÂVivo. Cell Chemical Biology, 2016, 23, 641-643.	2.5	2
196	Unveiling the K+-sensitivity of cell metabolism using genetically encoded, FRET-based K+, glucose, and ATP biosensors. STAR Protocols, 2021, 2, 100843.	0.5	2
197	Manipulation of Mitochondrial Function by Polyphenols for New Treatment Strategies. , 2018, , 277-292.		1
198	High-Resolution Imaging of STIM/Orai Subcellular Localization Using Array Confocal Laser Scanning Microscopy. Methods in Molecular Biology, 2018, 1843, 175-187.	0.4	1

#	Article	IF	CITATIONS
199	Metabolic Profiling of Single Cancer Cells Using Mitochondrial ATP Probes. STAR Protocols, 2020, 1, 100048.	0.5	1
200	The Role of Mitochondria in the Activation/Maintenance of SOCE. , 2012, , 211-229.		0
201	Micro-RNA 206 affects glucose induced insulin secretion under high-fat diet. Atherosclerosis, 2015, 241, e83.	0.4	Ο
202	Monoglyceride lipase regulates endocannabinoid tone and atherosclerotic plaque structure in apolipoprotein E-deficient mice. Atherosclerosis, 2016, 252, e259.	0.4	0
203	Development of novel fluorescent protein-based probes for live-cell imaging of nitric oxide dynamics. Free Radical Biology and Medicine, 2016, 96, S18.	1.3	0
204	Assessment of Mitochondrial Ca2+ Uptake. Methods in Molecular Biology, 2021, 2276, 173-191.	0.4	0
205	Hexokinase-II Enzymatic Activity Requires High Levels of Intracellular K+. SSRN Electronic Journal, 0, , .	0.4	0
206	Yes (again) to local NO. Nature Chemical Biology, 2020, 16, 606-607.	3.9	0
207	BioMed: Let's Bring Together What Belongs Together. BioMed, 2021, 1, 112-113.	0.6	0
208	Salivary potassium measured by genetically encoded potassium ion indicators as a surrogate for plasma potassium levels in hemodialysis patients – a proof-of-concept study. Nephrology Dialysis Transplantation, 0, , .	0.4	0
209	The preamble to the Free Radical Biology and Medicine Virtual Special Issue on "Targeting genetic biosensors to intracellular signaling pathways.― Free Radical Biology and Medicine, 2022, , .	1.3	Ο