
Dennis A Hesselink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8077079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring intracellular tacrolimus concentrations and its relationship with rejection in the early phase after renal transplantation. Clinical Biochemistry, 2022, 101, 9-15.	1.9	9
2	The use of freeze-dried blood samples affects the results of a dried blood spot analysis. Clinical Biochemistry, 2022, 104, 70-73.	1.9	5
3	Clinical and Molecular Profiling to Develop a Potential Prediction Model for the Response to Alemtuzumab Therapy for Acute Kidney Transplant Rejection. Clinical Pharmacology and Therapeutics, 2022, 111, 1155-1164.	4.7	2
4	Model-Based Tacrolimus Follow-up Dosing in Adult Renal Transplant Recipients: A Simulation Trial. Therapeutic Drug Monitoring, 2022, 44, 606-614.	2.0	7
5	Association Between the Intracellular Tacrolimus Concentration in CD3+ T Lymphocytes and CD14+ Monocytes and Acute Kidney Transplant Rejection. Therapeutic Drug Monitoring, 2022, 44, 625-632.	2.0	5
6	A Novel High-throughput Droplet Digital PCR-based Indel Quantification Method for the Detection of Circulating Donor-derived Cell-free DNA After Kidney Transplantation. Transplantation, 2022, 106, 1777-1786.	1.0	7
7	High Tacrolimus Intrapatient Variability and Subtherapeutic Immunosuppression are Associated With Adverse Kidney Transplant Outcomes. Therapeutic Drug Monitoring, 2022, 44, 369-376.	2.0	5
8	Validation of a dried blood spot method to measure tacrolimus concentrations in small volumes of mouse blood. Bioanalysis, 2022, 14, 441-449.	1.5	1
9	A randomized crossover study comparing different tacrolimus formulations to reduce intrapatient variability in tacrolimus exposure in kidney transplant recipients. Clinical and Translational Science, 2022, 15, 930-941.	3.1	7
10	lmmune Subsets From Ficoll Density Gradient Separation in Kidney Transplant Recipients. Transplantation Direct, 2022, 8, e1319.	1.6	3
11	A Population Pharmacokinetic Model of Whole-Blood and Intracellular Tacrolimus in Kidney Transplant Recipients. European Journal of Drug Metabolism and Pharmacokinetics, 2022, 47, 523-535.	1.6	4
12	Body composition is associated with tacrolimus pharmacokinetics in kidney transplant recipients. European Journal of Clinical Pharmacology, 2022, 78, 1273-1287.	1.9	2
13	Iron deficiency after kidney transplantation. Nephrology Dialysis Transplantation, 2021, 36, 1976-1985.	0.7	11
14	Monitoring the tacrolimus concentration in peripheral blood mononuclear cells of kidney transplant recipients. British Journal of Clinical Pharmacology, 2021, 87, 1918-1929.	2.4	20
15	Determining the therapeutic range for ribavirin in transplant recipients with chronic hepatitis E virus infection. Journal of Viral Hepatitis, 2021, 28, 431-435.	2.0	7
16	Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ Transplantation. Frontiers in Immunology, 2021, 12, 607953.	4.8	2
17	Circulating cell-free nucleosomes as biomarker for kidney transplant rejection: a pilot study. Clinical Epigenetics, 2021, 13, 32.	4.1	6
18	Avoiding Tacrolimus Underexposure and Overexposure with a Dosing Algorithm for Renal Transplant Recipients: A Single Arm Prospective Intervention Trial. Clinical Pharmacology and Therapeutics, 2021, 110, 169-178.	4.7	24

#	Article	IF	CITATIONS
19	A 2020 Banff Antibodyâ€mediatedInjury Working Group examination of international practices for diagnosing antibodyâ€mediated rejection in kidney transplantation – a cohort study. Transplant International, 2021, 34, 488-498.	1.6	15
20	Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Therapeutic Drug Monitoring, 2021, 43, 150-200.	2.0	89
21	Circulating endothelial cells transiently increase in peripheral blood after kidney transplantation. Scientific Reports, 2021, 11, 8915.	3.3	4
22	Delayed graft function and rejection are risk factors for cytomegalovirus breakthrough infection in kidney transplant recipients. Pharmacological Research, 2021, 167, 105565.	7.1	7
23	Cholesterol Embolization Syndrome After Kidney Transplantation: A Case Series and Systematic Review. Transplantation Direct, 2021, 7, e717.	1.6	0
24	Pre-transplant donor-reactive IL-21 producing T cells as a tool to identify an increased risk for acute rejection. Scientific Reports, 2021, 11, 12445.	3.3	7
25	Therapeutic drug monitoring of immunosuppressive drugs in hepatology and gastroenterology. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2021, 54-55, 101756.	2.4	12
26	Rationale and design of the OPTIMIZE trial: OPen label multicenter randomized trial comparing standard IMmunosuppression with tacrolimus and mycophenolate mofetil with a low exposure tacrolimus regimen In combination with everolimus in de novo renal transplantation in Elderly patients. BMC Nephrology, 2021, 22, 208.	1.8	6
27	Pitfalls in the Detection of Donor-Derived Cell-Free DNA in Transplant Recipients. Clinical Chemistry, 2021, 67, 1030-1032.	3.2	3
28	A systematic review and meta-analysis of enzyme-linked immunosorbent spot (ELISPOT) assay for BK polyomavirus immune response monitoring after kidney transplantation. Journal of Clinical Virology, 2021, 140, 104848.	3.1	7
29	Care for the organ transplant recipient on the intensive care unit. Journal of Critical Care, 2021, 64, 37-44.	2.2	2
30	Implementation of donation after circulatory death kidney transplantation can safely enlarge the donor pool: A systematic review and meta-analysis. International Journal of Surgery, 2021, 92, 106021.	2.7	26
31	Donor-specific ELISPOT assay for predicting acute rejection and allograft function after kidney transplantation: A systematic review and meta-analysis. Clinical Biochemistry, 2021, 94, 1-11.	1.9	10
32	Urinary Extracellular Vesicles Are a Novel Tool to Monitor Allograft Function in Kidney Transplantation: A Systematic Review. International Journal of Molecular Sciences, 2021, 22, 10499.	4.1	8
33	A comparison of two different analytical methods for donor-derived cell-free DNA quantification. Clinical Biochemistry, 2021, 96, 82-84.	1.9	1
34	Development and Validation of Hematocrit Level Measurement in Dried Blood Spots Using Near-Infrared Spectroscopy. Therapeutic Drug Monitoring, 2021, 43, 351-357.	2.0	18
35	Serum magnesium, hepatocyte nuclear factor 1β genotype and post-transplant diabetes mellitus: a prospective study. Nephrology Dialysis Transplantation, 2020, 35, 176-183.	0.7	3
36	Utility of immunohistochemistry with C3d in C3 glomerulopathy. Modern Pathology, 2020, 33, 431-439.	5.5	8

#	Article	IF	CITATIONS
37	A Population Pharmacokinetic Model Does Not Predict the Optimal Starting Dose of Tacrolimus in Pediatric Renal Transplant Recipients in a Prospective Study: Lessons Learned and Model Improvement. Clinical Pharmacokinetics, 2020, 59, 591-603.	3.5	14
38	Costimulation Blockade in Kidney Transplant Recipients. Drugs, 2020, 80, 33-46.	10.9	21
39	Clinical Relevance of Arteriolar C4d Staining in Patients With Chronic-active Antibody-mediated Rejection: A Pilot Study. Transplantation, 2020, 104, 1085-1094.	1.0	1
40	Measuring Intracellular Concentrations of Calcineurin Inhibitors: Expert Consensus from the International Association of Therapeutic Drug Monitoring and Clinical Toxicology Expert Panel. Therapeutic Drug Monitoring, 2020, 42, 665-670.	2.0	22
41	Donorâ€derived cellâ€free DNA as a biomarker for rejection after kidney transplantation: a systematic review and metaâ€analysis. Transplant International, 2020, 33, 1626-1642.	1.6	30
42	Acquired haemophilia A after alemtuzumab therapy. Haemophilia, 2020, 26, e337-e339.	2.1	7
43	Usage of Tacrolimus and Mycophenolic Acid During Conception, Pregnancy, and Lactation, and Its Implications for Therapeutic Drug Monitoring: A Systematic Critical Review. Therapeutic Drug Monitoring, 2020, 42, 518-531.	2.0	25
44	Immunosuppression Has Long-Lasting Effects on Circulating Follicular Regulatory T Cells in Kidney Transplant Recipients. Frontiers in Immunology, 2020, 11, 1972.	4.8	18
45	Molecular Analysis of Renal Allograft Biopsies: Where Do We Stand and Where Are We Going?. Transplantation, 2020, 104, 2478-2486.	1.0	8
46	COVIDâ€19 in solid organ transplant recipients: a singleâ€center experience. Transplant International, 2020, 33, 1099-1105.	1.6	71
47	The pharmacogenetics of tacrolimus and its implications for personalized therapy in kidney transplant recipients. Expert Review of Precision Medicine and Drug Development, 2020, 5, 313-316.	0.7	4
48	Comparison of Alemtuzumab and Anti-thymocyte Globulin Treatment for Acute Kidney Allograft Rejection. Frontiers in Immunology, 2020, 11, 1332.	4.8	10
49	Incidence of endâ€stage renal disease after heart transplantation and effect of its treatment on survival. ESC Heart Failure, 2020, 7, 533-541.	3.1	29
50	Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy after alemtuzumab therapy in kidney transplant recipients. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	11
51	Pharmacologic Treatment of Transplant Recipients Infected With SARS-CoV-2: Considerations Regarding Therapeutic Drug Monitoring and Drug–Drug Interactions. Therapeutic Drug Monitoring, 2020, 42, 360-368.	2.0	48
52	Protein and calorie restriction may improve outcomes in living kidney donors and kidney transplant recipients. Aging, 2020, 12, 12441-12467.	3.1	13
53	Evidence-based practice: Guidance for using everolimus in combination with low-exposure calcineurin inhibitors as initial immunosuppression in kidney transplant patients. Transplantation Reviews, 2019, 33, 191-199.	2.9	12
54	Impact of low tacrolimus exposure and high tacrolimus intra-patient variability on the development of <i>de novo</i> anti-HLA donor-specific antibodies in kidney transplant recipients. Expert Review of Clinical Immunology, 2019, 15, 1323-1331.	3.0	24

#	Article	IF	CITATIONS
55	Oxalate deposition in renal allograft biopsies within 3 months after transplantation is associated with allograft dysfunction. PLoS ONE, 2019, 14, e0214940.	2.5	4
56	Exploring the neuroregenerative potential of tacrolimus. Expert Review of Clinical Pharmacology, 2019, 12, 1047-1057.	3.1	24
57	The Number of Donor-Specific IL-21 Producing Cells Before and After Transplantation Predicts Kidney Graft Rejection. Frontiers in Immunology, 2019, 10, 748.	4.8	29
58	Characterization of donor and recipient CD8+ tissue-resident memory T cells in transplant nephrectomies. Scientific Reports, 2019, 9, 5984.	3.3	40
59	Parathyroidectomy versus cinacalcet for tertiary hyperparathyroidism; a retrospective analysis. Langenbeck's Archives of Surgery, 2019, 404, 71-79.	1.9	20
60	Targeted Proteomic Analysis Detects Acute T Cell–Mediated Kidney Allograft Rejection in Belatacept-Treated Patients. Therapeutic Drug Monitoring, 2019, 41, 243-248.	2.0	1
61	High Intrapatient Variability in Tacrolimus Exposure Is Not Associated With Immune-mediated Graft Injury After Liver Transplantation. Transplantation, 2019, 103, 2329-2337.	1.0	15
62	Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Therapeutic Drug Monitoring, 2019, 41, 261-307.	2.0	374
63	Immunomics of Renal Allograft Acute T Cell-Mediated Rejection Biopsies of Tacrolimus- and Belatacept-Treated Patients. Transplantation Direct, 2019, 5, e418.	1.6	14
64	A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. British Journal of Clinical Pharmacology, 2019, 85, 601-615.	2.4	56
65	Highly sensitive and rapid determination of tacrolimus in peripheral blood mononuclear cells by liquid chromatography–tandem mass spectrometry. Biomedical Chromatography, 2019, 33, e4416.	1.7	23
66	Surgical Safety and Efficacy of Third Kidney Transplantation in the Ipsilateral Iliac Fossa. Annals of Transplantation, 2019, 24, 132-138.	0.9	13
67	Detection of a rare <i>CYP3A4</i> variant in a transplant patient characterized by a tacrolimus poor metabolizer phenotype. Pharmacogenomics, 2018, 19, 305-310.	1.3	7
68	Dosing ribavirin in hepatitis E-infected solid organ transplant recipients. Pharmacological Research, 2018, 130, 308-315.	7.1	16
69	Preoperative right heart hemodynamics predict postoperative acute kidney injury after heart transplantation. Intensive Care Medicine, 2018, 44, 588-597.	8.2	52
70	Characterization of ectopic lymphoid structures in different types of acute renal allograft rejection. Clinical and Experimental Immunology, 2018, 192, 224-232.	2.6	42
71	Improved Glucose Tolerance in a Kidney Transplant Recipient With Type 2 Diabetes Mellitus After Switching From Tacrolimus To Belatacept: A Case Report and Review of Potential Mechanisms. Transplantation Direct, 2018, 4, e350.	1.6	8
72	Personalized immunosuppression in elderly renal transplant recipients. Pharmacological Research, 2018, 130, 303-307.	7.1	29

#	Article	IF	CITATIONS
73	A Population Pharmacokinetic Model to Predict the Individual Starting Dose of Tacrolimus Following Pediatric Renal Transplantation. Clinical Pharmacokinetics, 2018, 57, 475-489.	3.5	48
74	Review of the Clinical Pharmacokinetics and Pharmacodynamics of Alemtuzumab and Its Use in Kidney Transplantation. Clinical Pharmacokinetics, 2018, 57, 191-207.	3.5	58
75	Pre-operative proteinuria in left ventricular assist devices and clinical outcome. Journal of Heart and Lung Transplantation, 2018, 37, 124-130.	0.6	17
76	Co-inhibitory profile and cytotoxicity of CD57+PD-1â^' T cells in end-stage renal disease patients. Clinical and Experimental Immunology, 2018, 191, 363-372.	2.6	6
77	Prediction of Free from Total Mycophenolic Acid Concentrations in Stable Renal Transplant Patients: A Population-Based Approach. Clinical Pharmacokinetics, 2018, 57, 877-893.	3.5	20
78	Acute kidney injury and 1-year mortality after left ventricular assist device implantation. Journal of Heart and Lung Transplantation, 2018, 37, 116-123.	0.6	33
79	Liquid Biopsies to Monitor Solid Organ Transplant Function: A Review of New Biomarkers. Therapeutic Drug Monitoring, 2018, 40, 515-525.	2.0	39
80	Analysis of NFATc1 amplification in T cells for pharmacodynamic monitoring of tacrolimus in kidney transplant recipients. PLoS ONE, 2018, 13, e0201113.	2.5	11
81	Response: Commentary: Belatacept Does Not Inhibit Follicular T Cell-Dependent B-Cell Differentiation in Kidney Transplantation. Frontiers in Immunology, 2018, 9, 466.	4.8	0
82	<i>CYP3A5</i> and <i>ABCB1</i> polymorphisms in living donors do not impact clinical outcome after kidney transplantation. Pharmacogenomics, 2018, 19, 895-903.	1.3	7
83	Tacrolimus intra-patient variability is not associated with chronic active antibody mediated rejection. PLoS ONE, 2018, 13, e0196552.	2.5	29
84	The Efficacy of Rabbit Anti-Thymocyte Globulin for Acute Kidney Transplant Rejection in Patients Using Calcineurin Inhibitor and Mycophenolate Mofetil-Based Immunosuppressive Therapy. Annals of Transplantation, 2018, 23, 577-590.	0.9	9
85	Progress of Immunosuppressive regimen after kidney transplantation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY52-1.	0.0	0
86	Chlorthalidone Versus Amlodipine for Hypertension in KidneyÂTransplant Recipients Treated With Tacrolimus: AÂRandomized Crossover Trial. American Journal of Kidney Diseases, 2017, 69, 796-804.	1.9	40
87	Systematic review of surgical and medical treatment for tertiary hyperparathyroidism. British Journal of Surgery, 2017, 104, 804-813.	0.3	51
88	A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. Clinical Pharmacokinetics, 2017, 56, 963-975.	3.5	69
89	Effect of Age and Renal Function on Survival After Left Ventricular Assist Device Implantation. American Journal of Cardiology, 2017, 120, 2221-2225.	1.6	16
90	The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation. Pharmacogenetics and Genomics, 2017, 27, 313-322.	1.5	52

#	Article	IF	CITATIONS
91	Differential T Cell Signaling Pathway Activation by Tacrolimus and Belatacept after Kidney Transplantation: Post Hoc Analysis of a Randomised-Controlled Trial. Scientific Reports, 2017, 7, 15135.	3.3	11
92	Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 1225-1236.	3.3	95
93	The pharmacokinetics and pharmacodynamics of mycophenolate mofetil in younger and elderly renal transplant recipients. British Journal of Clinical Pharmacology, 2017, 83, 812-822.	2.4	30
94	Overweight Kidney Transplant Recipients Are at Risk of Being Overdosed Following Standard Bodyweight-Based Tacrolimus Starting Dose. Transplantation Direct, 2017, 3, e129.	1.6	30
95	Tacrolimus Updated Guidelines through popPK Modeling: How to Benefit More from CYP3A Pre-emptive Genotyping Prior to Kidney Transplantation. Frontiers in Pharmacology, 2017, 8, 358.	3.5	44
96	Targeting the Monocyte–Macrophage Lineage in Solid Organ Transplantation. Frontiers in Immunology, 2017, 8, 153.	4.8	63
97	Belatacept Does Not Inhibit Follicular T Cell-Dependent B-Cell Differentiation in Kidney Transplantation. Frontiers in Immunology, 2017, 8, 641.	4.8	25
98	The Effect of Tacrolimus and Mycophenolic Acid on CD14+ Monocyte Activation and Function. PLoS ONE, 2017, 12, e0170806.	2.5	39
99	Down-Regulation of Surface CD28 under Belatacept Treatment: An Escape Mechanism for Antigen-Reactive T-Cells. PLoS ONE, 2016, 11, e0148604.	2.5	27
100	Alemtuzumab as Antirejection Therapy. Transplantation Direct, 2016, 2, e83.	1.6	15
101	A Randomized Controlled Trial Comparing the Efficacy of Cyp3a5 Genotypeâ€Based With Bodyâ€Weightâ€Based Tacrolimus Dosing After Living Donor Kidney Transplantation. American Journal of Transplantation, 2016, 16, 2085-2096.	4.7	129
102	A high intrapatient variability in tacrolimus exposure is associated with poor long-term outcome of kidney transplantation. Transplant International, 2016, 29, 1158-1167.	1.6	108
103	Variations in DNA methylation of interferon gamma and programmed death 1 in allograft rejection after kidney transplantation. Clinical Epigenetics, 2016, 8, 116.	4.1	22
104	Neutrophil gelatinase-associated lipocalin (NGAL) predicts the occurrence of malaria-induced acute kidney injury. Malaria Journal, 2016, 15, 464.	2.3	17
105	Consideration of the ethnic prevalence of genotypes in the clinical use of tacrolimus. Pharmacogenomics, 2016, 17, 1737-1740.	1.3	26
106	Pharmacogenetic Biomarkers Predictive of the Pharmacokinetics and Pharmacodynamics of Immunosuppressive Drugs. Therapeutic Drug Monitoring, 2016, 38, S57-S69.	2.0	54
107	Uremia-Associated Premature Aging of T Cells Does Not Predict Infectious Complications After Renal Transplantation. American Journal of Transplantation, 2016, 16, 2324-2333.	4.7	17
108	Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 555-565.	3.3	106

#	Article	IF	CITATIONS
109	Lung Transplantation in Gaucher Disease. Chest, 2016, 149, e1-e5.	0.8	16
110	Hepatitis E virus genotype 3 infection in a tertiary referral center in the Netherlands: Clinical relevance and impact on patient morbidity. Journal of Clinical Virology, 2016, 74, 82-87.	3.1	15
111	Loss of CD28 on Peripheral T Cells Decreases the Risk for Early Acute Rejection after Kidney Transplantation. PLoS ONE, 2016, 11, e0150826.	2.5	46
112	Seen from the moon we are all the same size: Deceased donation in the Netherlands. Netherlands Journal of Medicine, 2016, 74, 282-4.	0.5	0
113	Acute kidney injury in imported Plasmodium falciparum malaria. Malaria Journal, 2015, 14, 523.	2.3	40
114	Primary Cytomegalovirus Infection Significantly Impacts Circulating T Cells in Kidney Transplant Recipients. American Journal of Transplantation, 2015, 15, 3143-3156.	4.7	28
115	Renal transplantation—reducing risk and improving outcome. Nature Reviews Nephrology, 2015, 11, 72-73.	9.6	4
116	Fifteen-year survival of a polycystic kidney transplant. Transplant International, 2015, 28, 870-871.	1.6	1
117	Intra-patient variability in tacrolimus exposure: Causes, consequences for clinical management. Transplantation Reviews, 2015, 29, 78-84.	2.9	161
118	Pharmacokinetics and pharmacodynamics of immunosuppressive drugs in elderly kidney transplant recipients. Transplantation Reviews, 2015, 29, 224-230.	2.9	24
119	Improved long-term survival in Dutch heart transplant patients despite increasing donor age: the Rotterdam experience. Transplant International, 2015, 28, 962-971.	1.6	36
120	Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 921-936.	3.3	28
121	When a zero mismatch is no longer superior. Transplant International, 2015, 28, 398-400.	1.6	0
122	The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clinical Pharmacokinetics, 2014, 53, 123-139.	3.5	186
123	Practicability of Pharmacogenetics in Transplantation Medicine. Clinical Pharmacology and Therapeutics, 2014, 95, 262-264.	4.7	13
124	Pharmacogenetics and immunosuppressive drugs in solid organ transplantation. Nature Reviews Nephrology, 2014, 10, 725-731.	9.6	77
125	Validation of an LC–MS/MS method for the quantification of mycophenolic acid in human kidney transplant biopsies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 945-946, 171-177.	2.3	18
126	Improving long-term outcomes of kidney transplantation: The pressure is on. Netherlands Journal of Medicine, 2014, 72, 248-50.	0.5	6

#	Article	IF	CITATIONS
127	Tacrolimus Predose Concentrations Do Not Predict the Risk of Acute Rejection After Renal Transplantation: A Pooled Analysis From Three Randomized-Controlled Clinical Trials. American Journal of Transplantation, 2013, 13, 1253-1261.	4.7	117
128	Genetic Polymorphisms in ABCB1 Influence the Pharmacodynamics of Tacrolimus. Therapeutic Drug Monitoring, 2013, 35, 459-465.	2.0	43
129	Validation of an LC–MS/MS Method to Measure Tacrolimus in Rat Kidney and Liver Tissue and Its Application to Human Kidney Biopsies. Therapeutic Drug Monitoring, 2013, 35, 617-623.	2.0	31
130	Measurement of Cyclosporine A in Rat Tissues and Human Kidney Transplant Biopsies—A Method Suitable for Small (<1 mg) Samples. Therapeutic Drug Monitoring, 2011, 33, 688-693.	2.0	15
131	The Pharmacogenetics of Calcineurin Inhibitor–Related Nephrotoxicity. Therapeutic Drug Monitoring, 2010, 32, 387-393.	2.0	59
132	A drug transporter for all ages? <i>ABCB1</i> and the developmental pharmacogenetics of cyclosporine. Pharmacogenomics, 2008, 9, 783-789.	1.3	15
133	CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenetics and Genomics, 2008, 18, 339-348.	1.5	110
134	Genetic and nongenetic determinants of between-patient variability in the pharmacokinetics of mycophenolic acid. Clinical Pharmacology and Therapeutics, 2005, 78, 317-321.	4.7	61
135	The effects of renal transplantation on circulating dendritic cells. Clinical and Experimental Immunology, 2005, 140, 384-393.	2.6	31
136	Cyclosporine Interacts with Mycophenolic Acid by Inhibiting the Multidrug Resistance-Associated Protein 2. American Journal of Transplantation, 2005, 5, 987-994.	4.7	278
137	The pharmacogenetics of calcineurin inhibitors: one step closer toward individualized immunosuppression?. Pharmacogenomics, 2005, 6, 323-337.	1.3	82
138	The effects of chronic kidney disease and renal replacement therapy on circulating dendritic cells. Nephrology Dialysis Transplantation, 2005, 20, 1868-1873.	0.7	49
139	The relative importance of cyclosporine exposure in heart, kidney or liver transplant recipients on maintenance therapy. Transplant International, 2004, 17, 495-504.	1.6	5
140	Population pharmacokinetics of cyclosporine in kidney and heart transplant recipients and the influence of ethnicity and genetic polymorphisms in the and genes. Clinical Pharmacology and Therapeutics, 2004, 76, 545-556.	4.7	153
141	The use of cyclosporine in renal transplantation. Transplantation Proceedings, 2004, 36, S99-S106.	0.6	21
142	Experience with cyclosporine in endogenous uveitis posterior. Transplantation Proceedings, 2004, 36, S372-S377.	0.6	25
143	The relative importance of cyclosporine exposure in heart, kidney or liver transplant recipients on maintenance therapy. Transplant International, 2004, 17, 495-504.	1.6	1
144	Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clinical Pharmacology and Therapeutics, 2003, 74, 245-254.	4.7	580

#	Article	IF	CITATIONS
145	Tacrolimus dose requirement in renal transplant recipients is significantly higher when used in combination with corticosteroids. British Journal of Clinical Pharmacology, 2003, 56, 327-330.	2.4	70
146	Profiles of the acuteâ€phase reactants Câ€reactive protein and ferritin related to the disease course of patients with systemic lupus erythematosus. Scandinavian Journal of Rheumatology, 2003, 32, 151-155.	1.1	28
147	Personalized anti-rejection therapy with alemtuzumab for kidney transplant recipients. Pharmacogenomics, 0, , .	1.3	0