List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076708/publications.pdf Version: 2024-02-01

		7551	11899
319	22,848	77	134
papers	citations	h-index	g-index
331	331	331	15666
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neurolmage, 2010, 49, 1271-1281.	2.1	1,075
2	In vivo1H NMR spectroscopy of rat brain at 1 ms echo time. Magnetic Resonance in Medicine, 1999, 41, 649-656.	1.9	870
3	Automatic, localizedin Vivo adjustment of all first-and second-order shim coils. Magnetic Resonance in Medicine, 1993, 29, 804-811.	1.9	826
4	Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology, 2014, 270, 658-679.	3.6	524
5	Field mapping without reference scan using asymmetric echo-planar techniques. Magnetic Resonance in Medicine, 2000, 43, 319-323.	1.9	521
6	Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain. Journal of Magnetic Resonance, 1999, 141, 104-120.	1.2	457
7	Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 4952-4956.	3.3	424
8	In vivo1H NMR spectroscopy of the human brain at 7 T. Magnetic Resonance in Medicine, 2001, 46, 451-456.	1.9	353
9	In vivo ¹ H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T. Magnetic Resonance in Medicine, 2009, 62, 868-879.	1.9	316
10	Simultaneous Determination of the Rates of the TCA Cycle, Glucose Utilization, α-Ketoglutarate/Glutamate Exchange, and Glutamine Synthesis in Human Brain by NMR. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 12-25.	2.4	307
11	MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magnetic Resonance in Medicine, 2009, 61, 1279-1285.	1.9	291
12	A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E100-E112.	1.8	290
13	Methodological consensus on clinical proton MRS of the brain: Review and recommendations. Magnetic Resonance in Medicine, 2019, 82, 527-550.	1.9	280
14	Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition. Magnetic Resonance in Medicine, 2006, 56, 965-970.	1.9	260
15	Sustained Neuronal Activation Raises Oxidative Metabolism to a New Steady-State Level: Evidence from 1H NMR Spectroscopy in the Human Visual Cortex. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1055-1063.	2.4	253
16	Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz. Journal of Magnetic Resonance Imaging, 2004, 19, 650-656.	1.9	248
17	Localized ¹³ C NMR Spectroscopy in the Human Brain of Amino Acid Labeling from <scp>d</scp> â€{1â€ ¹³ C]Glucose. Journal of Neurochemistry, 1994, 63, 1377-1385.	2.1	229
18	Ultrahigh field magnetic resonance imaging and spectroscopy. Magnetic Resonance Imaging, 2003, 21, 1263-1281.	1.0	218

#	Article	IF	CITATIONS
19	Steady‣tate Cerebral Glucose Concentrations and Transport in the Human Brain. Journal of Neurochemistry, 1998, 70, 397-408.	2.1	215
20	Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1109-1112.	3.3	212
21	Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo1H NMR spectroscopy. Magnetic Resonance in Medicine, 2003, 50, 24-32.	1.9	212
22	Perinatal Iron Deficiency Alters the Neurochemical Profile of the Developing Rat Hippocampus. Journal of Nutrition, 2003, 133, 3215-3221.	1.3	205
23	Neuroglial Metabolism in the Awake Rat Brain: CO2 Fixation Increases with Brain Activity. Journal of Neuroscience, 2004, 24, 11273-11279.	1.7	204
24	The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage, 2012, 61, 342-362.	2.1	199
25	Neuroprotective Role of Lactate after Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1780-1789.	2.4	197
26	Localized in vivo ¹³ C-NMR of Glutamate Metabolism in the Human Brain: Initial Results at 4 Tesla. Developmental Neuroscience, 1998, 20, 380-388.	1.0	188
27	Effect of hypoglycemia on brain glycogen metabolism in vivo. Journal of Neuroscience Research, 2003, 72, 25-32.	1.3	186
28	Human finger somatotopy in areas 3b, 1, and 2: A 7T fMRI study using a natural stimulus. Human Brain Mapping, 2014, 35, 213-226.	1.9	182
29	Glycogen: The forgotten cerebral energy store. Journal of Neuroscience Research, 2003, 74, 179-183.	1.3	178
30	Resolution Improvements inin Vivo1H NMR Spectra with Increased Magnetic Field Strength. Journal of Magnetic Resonance, 1998, 135, 260-264.	1.2	176
31	Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts in Magnetic Resonance Part B, 2007, 31B, 255-269.	0.3	172
32	Highly resolved in vivo1H NMR spectroscopy of the mouse brain at 9.4 T. Magnetic Resonance in Medicine, 2004, 52, 478-484.	1.9	171
33	Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. NeuroImage, 2019, 194, 82-92.	2.1	171
34	Methodology of1H NMR spectroscopy of the human brain at very high magnetic fields. Applied Magnetic Resonance, 2005, 29, 139-157.	0.6	164
35	A Half-Volume Coil for Efficient Proton Decoupling in Humans at 4 Tesla. Journal of Magnetic Resonance, 1997, 125, 178-184.	1.2	162
36	Measurement of reduced glutathione (GSH) in human brain using LCModel analysis of difference-edited spectra. Magnetic Resonance in Medicine, 2003, 50, 19-23.	1.9	162

#	Article	IF	CITATIONS
37	The Effect of Insulin on In Vivo Cerebral Glucose Concentrations and Rates of Glucose Transport/Metabolism in Humans. Diabetes, 2001, 50, 2203-2209.	0.3	161
38	Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress. Current Biology, 2017, 27, 2202-2210.e4.	1.8	161
39	Localizedin vivo13C NMR spectroscopy of the brain. NMR in Biomedicine, 2003, 16, 313-338.	1.6	150
40	In Vivo Measurements of Brain Glucose Transport Using the Reversible Michaelis–Menten Model and Simultaneous Measurements of Cerebral Blood Flow Changes during Hypoglycemia. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 653-663.	2.4	140
41	Extracellular–Intracellular Distribution of Glucose and Lactate in the Rat Brain Assessed Noninvasively by Diffusion-Weighted 1H Nuclear Magnetic Resonance Spectroscopy In Vivo. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 736-746.	2.4	139
42	New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping. PLoS ONE, 2013, 8, e69294.	1.1	135
43	Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocinâ€induced diabetic rats. Journal of Neurochemistry, 2009, 111, 368-379.	2.1	133
44	Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magnetic Resonance in Medicine, 2002, 47, 1009-1012.	1.9	128
45	Effect of Deep Pentobarbital Anesthesia on Neurotransmitter Metabolism <i>in Vivo</i> : On the Correlation of Total Glucose Consumption with Glutamatergic Action. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1343-1351.	2.4	122
46	N-acetylcysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis. Schizophrenia Bulletin, 2018, 44, 317-327.	2.3	121
47	Net increase of lactate and glutamate concentration in activated human visual cortex detected with magnetic resonance spectroscopy at 7 tesla. Journal of Neuroscience Research, 2013, 91, 1076-1083.	1.3	118
48	Hepatic glucose sensing is required to preserve β cell glucose competence. Journal of Clinical Investigation, 2013, 123, 1662-1676.	3.9	118
49	Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at 7 T. Magnetic Resonance Imaging, 2006, 24, 343-348.	1.0	115
50	Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E946-E951.	1.8	114
51	In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism. Neurochemistry International, 2002, 41, 143-154.	1.9	113
52	Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using1H-{13C} MRS and fMRI. Magnetic Resonance in Medicine, 2001, 45, 349-355.	1.9	112
53	Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magnetic Resonance in Medicine, 2016, 75, 1030-1039.	1.9	110
54	Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: Optimization of corrections and quantitative characterization of magnet/gradient systems. Magnetic Resonance in Medicine, 1991, 20, 268-284.	1.9	109

#	Article	IF	CITATIONS
55	On the origin of the MR image phase contrast: An in vivo MR microscopy study of the rat brain at 14.1ÂT. NeuroImage, 2009, 46, 345-352.	2.1	109
56	Proton NMR of ¹⁵ N-Choline Metabolites Enhanced by Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2009, 131, 16014-16015.	6.6	107
57	Localized in vivo1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1-13C] D-glucose. Magnetic Resonance in Medicine, 1999, 41, 1077-1083.	1.9	105
58	1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: Improvements in quantification of the neurochemical profile. Journal of Magnetic Resonance, 2008, 194, 163-168.	1.2	105
59	Neurochemical changes in Huntington R6/2 mouse striatum detected by inÂvivo1H NMR spectroscopy. Journal of Neurochemistry, 2007, 100, 1397-1406.	2.1	104
60	Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: Detection of high GABA concentrations. Magnetic Resonance in Medicine, 2006, 55, 296-301.	1.9	100
61	N-Acetylcysteine Normalizes Neurochemical Changes in the Glutathione-Deficient Schizophrenia Mouse Model During Development. Biological Psychiatry, 2012, 71, 1006-1014.	0.7	100
62	In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a practical perspective. Magnetic Resonance Imaging, 2006, 24, 527-539.	1.0	98
63	Feasibility of in vivo15N MRS detection of hyperpolarized 15N labeled choline in rats. Physical Chemistry Chemical Physics, 2010, 12, 5818.	1.3	96
64	Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Molecular Psychiatry, 2015, 20, 827-838.	4.1	95
65	Noninvasive Measurements of [1-13C] Glycogen Concentrations and Metabolism in Rat Brain In Vivo. Journal of Neurochemistry, 2001, 73, 1300-1308.	2.1	92
66	Validation of glutathione quantitation from STEAM spectra against edited 1H NMR spectroscopy at 4T: application to schizophrenia. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2005, 18, 276-282.	1.1	92
67	Contribution of macromolecules to brain ¹ H MR spectra: Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4393.	1.6	92
68	Are glutamate and lactate increases ubiquitous to physiological activation? A 1H functional MR spectroscopy study during motor activation in human brain at 7Tesla. NeuroImage, 2014, 93, 138-145.	2.1	90
69	Longitudinal neurochemical modifications in the aging mouse brain measured inÂvivo by 1H magnetic resonance spectroscopy. Neurobiology of Aging, 2014, 35, 1660-1668.	1.5	90
70	1H NMR Studies of Glucose Transport in the Human Brain. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 427-438.	2.4	89
71	Scavenging Free Radicals To Preserve Enhancement and Extend Relaxation Times in NMR using Dynamic Nuclear Polarization. Angewandte Chemie - International Edition, 2010, 49, 6182-6185.	7.2	89
72	Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. Journal of Neuroscience Research, 2005, 79, 42-47.	1.3	88

#	Article	IF	CITATIONS
73	Observation of resolved glucose signals in1H NMR spectra of the human brain at 4 Tesla. Magnetic Resonance in Medicine, 1996, 36, 1-6.	1.9	87
74	Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochemistry International, 2003, 43, 323-329.	1.9	86
75	Evolution of the Neurochemical Profile after Transient Focal Cerebral Ischemia in the Mouse Brain. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 811-819.	2.4	86
76	Spread Spectrum Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 2012, 31, 586-598.	5.4	86
77	Magnetic Resonance Studies of Brain Function and Neurochemistry. Annual Review of Biomedical Engineering, 2000, 2, 633-660.	5.7	84
78	Genetic Polymorphism Associated Prefrontal Glutathione and Its Coupling With Brain Glutamate and Peripheral Redox Status in Early Psychosis. Schizophrenia Bulletin, 2016, 42, 1185-1196.	2.3	83
79	In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochemistry International, 2003, 43, 317-322.	1.9	82
80	Proton <i>T</i> ₁ relaxation times of metabolites in human occipital white and gray matter at 7 T. Magnetic Resonance in Medicine, 2013, 69, 931-936.	1.9	82
81	In vivo magnetic resonance spectroscopy of human brain: The biophysical basis of dementia. Biophysical Chemistry, 1997, 68, 161-172.	1.5	80
82	In vivo assessment of myelination by phase imaging at high magnetic field. NeuroImage, 2012, 59, 1979-1987.	2.1	80
83	Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2* and magnetic susceptibility. NeuroImage, 2017, 147, 152-163.	2.1	80
84	Handling Macromolecule Signals in the Quantification of the Neurochemical Profile. Journal of Alzheimer's Disease, 2012, 31, S101-S115.	1.2	78
85	Detection of an antioxidant profile in the human brain in vivo via double editing with MEGA-PRESS. Magnetic Resonance in Medicine, 2006, 56, 1192-1199.	1.9	76
86	Broadband decoupled,1H-localized13C MRS of the human brain at 4 tesla. Magnetic Resonance in Medicine, 1996, 36, 659-664.	1.9	75
87	Unedited <i>in vivo</i> detection and quantification of γâ€aminobutyric acid in the occipital cortex using shortâ€TE MRS at 3 T. NMR in Biomedicine, 2013, 26, 1353-1362.	1.6	75
88	MP2RAGE Multiple Sclerosis Magnetic Resonance Imaging at 3 T. Investigative Radiology, 2012, 47, 346-352.	3.5	72
89	<i>In Vivo</i> Detection of Brain Krebs Cycle Intermediate by Hyperpolarized Magnetic Resonance. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 2108-2113.	2.4	72
90	Toward dynamic isotopomer analysis in the rat brainin vivo: automatic quantitation of13C NMR spectra using LCModel. NMR in Biomedicine, 2003, 16, 400-412.	1.6	71

#	Article	IF	CITATIONS
91	SA2RACE: A new sequence for fast <i>B</i> ₁ ⁺ â€mapping. Magnetic Resonance in Medicine, 2012, 67, 1609-1619.	1.9	71
92	Glutamatergic and <scp>GABA</scp> ergic energy metabolism measured in the rat brain by ¹³ C <scp>NMR</scp> spectroscopy at 14.1 T. Journal of Neurochemistry, 2013, 126, 579-590.	2.1	71
93	1H-localized broadband13C NMR spectroscopy of the rat brain in vivo at 9.4 T. Magnetic Resonance in Medicine, 2003, 50, 684-692.	1.9	70
94	Compartmentalized Cerebral Metabolism of [1,6-13C]Glucose Determined by in vivo13C NMR Spectroscopy at 14.1 T. Frontiers in Neuroenergetics, 2011, 3, 3.	5.3	70
95	Proton <i>T</i> ₂ relaxation time of <i>J</i> â€coupled cerebral metabolites in rat brain at 9.4 T. NMR in Biomedicine, 2008, 21, 396-401.	1.6	69
96	Validation of13C NMR measurements of liver glycogenin vivo. Magnetic Resonance in Medicine, 1994, 31, 583-588.	1.9	68
97	Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultraâ€short echo times. Magnetic Resonance in Medicine, 2008, 59, 52-58.	1.9	67
98	Single-shot, three-dimensional ?non-echo? localization method for in vivo NMR spectroscopy. Magnetic Resonance in Medicine, 2000, 44, 387-394.	1.9	66
99	Cerebellar Cortical Layers: In Vivo Visualization with Structural High-Field-Strength MR Imaging. Radiology, 2010, 254, 942-948.	3.6	66
100	In vivo effect of chronic hypoxia on the neurochemical profile of the developing rat hippocampus. Developmental Brain Research, 2005, 156, 202-209.	2.1	64
101	Temporal SNR characteristics in segmented 3Dâ€EPI at 7T. Magnetic Resonance in Medicine, 2012, 67, 344-352.	1.9	64
102	How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo. Frontiers in Neuroscience, 2017, 11, 288.	1.4	64
103	Simultaneous EEG–fMRI at ultra-high field: Artifact prevention and safety assessment. NeuroImage, 2015, 105, 132-144.	2.1	63
104	Nutritional Ketosis Increases NAD+/NADH Ratio in Healthy Human Brain: An in Vivo Study by 31P-MRS. Frontiers in Nutrition, 2018, 5, 62.	1.6	62
105	Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain. Neurolmage, 2012, 59, 389-398.	2.1	61
106	In vivo enzymatic activity of acetylCoA synthetase in skeletal muscle revealed by 13C turnover from hyperpolarized [1-13C]acetate to [1-13C]acetylcarnitine. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4171-4178.	1.1	61
107	B ₀ shimming for in vivo magnetic resonance spectroscopy: Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4350.	1.6	60
108	Localized Eddy Current Compensation Using Quantitative Field Mapping. Journal of Magnetic Resonance, 1998, 131, 139-143.	1.2	58

#	Article	IF	CITATIONS
109	Proton-observed carbon-edited NMR spectroscopy in strongly coupled second-order spin systems. Magnetic Resonance in Medicine, 2006, 55, 250-257.	1.9	58
110	Dynamics of lactate concentration and blood oxygen level-dependent effect in the human visual cortex during repeated identical stimuli. Journal of Neuroscience Research, 2007, 85, 3340-6.	1.3	58
111	Head motion detection using FID navigators. Magnetic Resonance in Medicine, 2011, 66, 135-143.	1.9	58
112	1H NMR detection of vitamin C in human brain in vivo. Magnetic Resonance in Medicine, 2004, 51, 225-229.	1.9	57
113	Water diffusion in rat brain in vivo as detected at very largeb values is multicompartmental. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1999, 8, 98-108.	1.1	54
114	Variations in the in vivo P-31 MR spectra of the developing human brain during postnatal life. Work in progress Radiology, 1989, 172, 197-199.	3.6	53
115	13 C NMR visibility of rabbit muscle glycogenin vivo. Magnetic Resonance in Medicine, 1991, 20, 327-332.	1.9	53
116	Detection and assignment of the glucose signal in1h nmr difference spectra of the human brain. Magnetic Resonance in Medicine, 1992, 27, 183-188.	1.9	53
117	Hyperpolarized lithiumâ€6 as a sensor of nanomolar contrast agents. Magnetic Resonance in Medicine, 2009, 61, 1489-1493.	1.9	53
118	Image-Derived Input Function from the Vena Cava for ¹⁸ F-FDG PET Studies in Rats and Mice. Journal of Nuclear Medicine, 2014, 55, 1380-1388.	2.8	53
119	Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion. Neurolmage, 2015, 120, 143-153.	2.1	53
120	Threeâ€dimensional echo planar imaging with controlled aliasing: A sequence for high temporal resolution functional MRI. Magnetic Resonance in Medicine, 2016, 75, 2350-2361.	1.9	53
121	Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo1H NMR spectroscopy. Journal of Neuroscience Research, 2001, 66, 891-898.	1.3	52
122	Deletion of glutamate dehydrogenase 1 (<i><scp>G</scp>lud1</i>) in the central nervous system affects glutamate handling without altering synaptic transmission. Journal of Neurochemistry, 2012, 123, 342-348.	2.1	52
123	Neurochemical profile of the developing mouse cortex determined by <i>in vivo</i> ¹ H NMR spectroscopy at 14.1â€fT and the effect of recurrent anaesthesia. Journal of Neurochemistry, 2010, 115, 1466-1477.	2.1	51
124	The C57BL/6J Mouse Exhibits Sporadic Congenital Portosystemic Shunts. PLoS ONE, 2013, 8, e69782.	1.1	51
125	An improved trap design for decoupling multinuclear RF coils. Magnetic Resonance in Medicine, 2014, 72, 584-590.	1.9	51
126	Is the macromolecule signal tissue-specific in healthy human brain? A ¹ H MRS study at 7 tesla in the occipital lobe. Magnetic Resonance in Medicine, 2014, 72, 934-940.	1.9	51

#	Article	IF	CITATIONS
127	Brain energy metabolism and neurotransmission at near-freezing temperatures: in vivo1H MRS study of a hibernating mammal. Journal of Neurochemistry, 2007, 101, 1505-1515.	2.1	49
128	GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution. Cell Reports, 2015, 13, 365-375.	2.9	49
129	Localized13C NMR spectroscopy ofmyo-inositol in the human brainin vivo. Magnetic Resonance in Medicine, 1992, 25, 204-210.	1.9	48
130	Metabolic Flux and Compartmentation Analysis in the Brain In vivo. Frontiers in Endocrinology, 2013, 4, 156.	1.5	47
131	A modulated closed form solution for quantitative susceptibility mapping — A thorough evaluation and comparison to iterative methods based on edge prior knowledge. NeuroImage, 2015, 107, 163-174.	2.1	47
132	Dynamic or inert metabolism? Turnover of N-acetyl aspartate and glutathione from d-[1-13C]glucose in the rat brain in vivo. Journal of Neurochemistry, 2004, 91, 778-787.	2.1	46
133	Biochemical quantification of total brain glycogen concentration in rats under different glycemic states. Neurochemistry International, 2006, 48, 616-622.	1.9	46
134	Compartmentalised energy metabolism supporting glutamatergic neurotransmission in response to increased activity in the rat cerebral cortex: A ¹³ C MRS study <i>inÂvivo</i> at 14.1 T. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 928-940.	2.4	46
135	Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate–glutamine cycle in the tree shrew visual cortex. Clia, 2018, 66, 477-491.	2.5	45
136	Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine. ELife, 2020, 9, .	2.8	45
137	Brain glucose concentrations in poorly controlled diabetes mellitus as measured by high-field magnetic resonance spectroscopy. Metabolism: Clinical and Experimental, 2005, 54, 1008-1013.	1.5	44
138	Digit somatotopy in the human cerebellum: A 7T fMRI study. NeuroImage, 2013, 67, 354-362.	2.1	44
139	N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: a double-blind randomized placebo-controlled trial. Translational Psychiatry, 2018, 8, 220.	2.4	44
140	Developmental and metabolic brain alterations in rats exposed to bisphenol A during gestation and lactation. International Journal of Developmental Neuroscience, 2011, 29, 37-43.	0.7	43
141	Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Scientific Reports, 2017, 7, 11719.	1.6	43
142	Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress. Scientific Reports, 2020, 10, 18308.	1.6	43
143	Identification of a high concentration ofscyllo-inositol in the brain of a healthy human subject using1H- and13C-NMR. Magnetic Resonance in Medicine, 1998, 39, 313-316.	1.9	42
144	Comparison of <i>T</i> ₁ relaxation times of the neurochemical profile in rat brain at 9.4 tesla and 14.1 tesla. Magnetic Resonance in Medicine, 2009, 62, 862-867.	1.9	42

#	Article	IF	CITATIONS
145	In vivo measurement of glycine with short echo-time 1H MRS in human brain at 7 T. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2009, 22, 1-4.	1.1	42
146	Quantification of the neurochemical profile using simulated macromolecule resonances at 3 T. NMR in Biomedicine, 2013, 26, 593-599.	1.6	41
147	Brain lactate by magnetic resonance spectroscopy during fulminant hepatic failure in the dog. Liver Transplantation, 1998, 4, 158-165.	1.9	40
148	Principles of Operation of a DNP Prepolarizer Coupled to a Rodent MRI Scanner. Applied Magnetic Resonance, 2008, 34, 313-319.	0.6	40
149	Neurochemical changes in the developing rat hippocampus during prolonged hypoglycemia. Journal of Neurochemistry, 2010, 114, 728-738.	2.1	40
150	Longitudinal MR assessment of hypoxic ischemic injury in the immature rat brain. Magnetic Resonance in Medicine, 2011, 65, 305-312.	1.9	40
151	Early Predictive Biomarkers for Lesion After Transient Cerebral Ischemia. Stroke, 2011, 42, 799-805.	1.0	40
152	Cerebral Glutamine Metabolism under Hyperammonemia Determined <i>in vivo</i> by Localized ¹ H and ¹⁵ N NMR Spectroscopy. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 696-708.	2.4	40
153	Proton and Phosphorus Magnetic Resonance Spectroscopy of a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 31, S87-S99.	1.2	40
154	Glutathione Deficit Affects the Integrity and Function of the Fimbria/Fornix and Anterior Commissure in Mice: Relevance for Schizophrenia. International Journal of Neuropsychopharmacology, 2016, 19, pyv110.	1.0	40
155	Impact of Caffeine Consumption on Type 2 Diabetes-Induced Spatial Memory Impairment and Neurochemical Alterations in the Hippocampus. Frontiers in Neuroscience, 2018, 12, 1015.	1.4	40
156	Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 488-500.	2.4	40
157	Perinatal Iron Deficiency Predisposes the Developing Rat Hippocampus to Greater Injury from Mild to Moderate Hypoxia—Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 729-740.	2.4	39
158	Where sound position influences sound object representations: A 7-T fMRI study. NeuroImage, 2011, 54, 1803-1811.	2.1	38
159	High-Resolution Magnetic Resonance Imaging Quantitatively Detects Individual Pancreatic Islets. Diabetes, 2011, 60, 2853-2860.	0.3	38
160	<i>In vivo</i> quantification of neuroâ€glial metabolism and glial glutamate concentration using ¹ Hâ€{ ¹³ C] <scp>MRS</scp> at 14.1T. Journal of Neurochemistry, 2014, 128, 125-139.	2.1	38
161	Multi-Modal Assessment of Long-Term Erythropoietin Treatment after Neonatal Hypoxic-Ischemic Injury in Rat Brain. PLoS ONE, 2014, 9, e95643.	1.1	38
162	Whole-brain glutamate metabolism evaluated by steady-state kinetics using a double-isotope procedure: effects of gabapentin. Journal of Neurochemistry, 2004, 90, 1104-1116.	2.1	37

#	Article	IF	CITATIONS
163	Effect of chronic hypoglycaemia on glucose concentration and glycogen content in rat brain: a localized13C NMR study. Journal of Neurochemistry, 2006, 99, 260-268.	2.1	37
164	An <i>in vivo</i> ultrahigh field 14.1 T ¹ Hâ€MRS study on 6â€OHDA and αâ€synucleinâ€based models of Parkinson's disease: GABA as an early disease marker. NMR in Biomedicine, 2013, 26, 43-50.	rat 1.6	37
165	High-fat diet consumption alters energy metabolism in the mouse hypothalamus. International Journal of Obesity, 2019, 43, 1295-1304.	1.6	37
166	Effect of Deep Pentobarbital Anesthesia on Neurotransmitter Metabolism In Vivo: On the Correlation of Total Glucose Consumption With Glutamatergic Action. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1343-1351.	2.4	37
167	Detecting natural abundance carbon signal of NAA metabolite within 12-cm3 localized volume of human brain using1H-{13C} NMR spectroscopy. Magnetic Resonance in Medicine, 1998, 40, 180-184.	1.9	36
168	Diffusionâ€weighted spectroscopy: A novel approach to determine macromolecule resonances in shortâ€echo time ¹ Hâ€MRS. Magnetic Resonance in Medicine, 2010, 64, 939-946.	1.9	36
169	A human cerebral and cerebellar 8â€channel transceive RF dipole coil array at 7T. Magnetic Resonance in Medicine, 2019, 81, 1447-1458.	1.9	36
170	Quantification ofin vivoshort echo-time proton magnetic resonance spectra at 14.1 T using two different approaches of modelling the macromolecule spectrum. Measurement Science and Technology, 2009, 20, 104034.	1.4	35
171	Characterization of cerebral glucose dynamics <i>inÂvivo</i> with a fourâ€state conformational model of transport at the blood–brain barrier. Journal of Neurochemistry, 2012, 121, 396-406.	2.1	35
172	A combined 32â€channel receiveâ€loops/8â€channel transmitâ€dipoles coil array for wholeâ€brain MR imaging at 7T. Magnetic Resonance in Medicine, 2019, 82, 1229-1241.	¹ 1.9	35
173	Brain glucose concentrations in healthy humans subjected to recurrent hypoglycemia. Journal of Neuroscience Research, 2005, 82, 525-530.	1.3	34
174	Influence of physiological noise on accelerated 2D and 3D resting state functional MRI data at 7 T. Magnetic Resonance in Medicine, 2017, 78, 888-896.	1.9	34
175	Characterization of sustained BOLD activation in the rat barrel cortex and neurochemical consequences. NeuroImage, 2013, 74, 343-351.	2.1	33
176	Protective effects of maternal nutritional supplementation with lactoferrin on growth and brain metabolism. Pediatric Research, 2014, 75, 51-61.	1.1	33
177	Improving <i>T</i> ₂ â€weighted imaging at high field through the use of <i>k_T</i> â€points. Magnetic Resonance in Medicine, 2014, 71, 1478-1488.	1.9	32
178	Nucleus accumbens neurochemistry in human anxiety: A 7 T 1H-MRS study. European Neuropsychopharmacology, 2019, 29, 365-375.	0.3	32
179	Minimization of Nyquist ghosting for echoâ€planar imaging at ultraâ€high fields based on a "negative readout gradient―strategy. Journal of Magnetic Resonance Imaging, 2009, 30, 1171-1178.	1.9	31
180	Neurochemical profile of the mouse hypothalamus using <i>in vivo</i> ¹ H MRS at 14.1T. NMR in Biomedicine, 2010, 23, 578-583.	1.6	31

#	Article	IF	CITATIONS
181	Quantification of vitamin C in the rat brain in vivo using short echo-time1H MRS. Magnetic Resonance in Medicine, 2006, 55, 979-983.	1.9	30
182	Direct noninvasive estimation of myocardial tricarboxylic acid cycle flux in vivo using hyperpolarized 13C magnetic resonance. Journal of Molecular and Cellular Cardiology, 2015, 87, 129-137.	0.9	30
183	Single acquisition electrical property mapping based on relative coil sensitivities: A proofâ€ofâ€concept demonstration. Magnetic Resonance in Medicine, 2015, 74, 185-195.	1.9	29
184	Simultaneous and interleaved acquisition of <scp>NMR</scp> signals from different nuclei with a clinical <scp>MRI</scp> scanner. Magnetic Resonance in Medicine, 2016, 76, 1636-1641.	1.9	29
185	Alterations of Brain Energy Metabolism in Type 2 Diabetic Goto-Kakizaki Rats Measured In Vivo by 13C Magnetic Resonance Spectroscopy. Neurotoxicity Research, 2019, 36, 268-278.	1.3	29
186	Evaluation of brain mitochondrial glutamate and ?-ketoglutarate transport under physiologic conditions. Journal of Neuroscience Research, 2005, 79, 106-113.	1.3	28
187	Sequential NMR assignments of labile protons in DNA using two-dimensional nuclear-Overhauser-enhancemnt spectroscopy with three jump-and-return pulse sequences. FEBS Journal, 1987, 166, 215-220.	0.2	27
188	Alteration of brain glycogen turnover in the conscious rat after 5h of prolonged wakefulness. Neurochemistry International, 2009, 55, 45-51.	1.9	27
189	Localized in vivo hyperpolarization transfer sequences. Magnetic Resonance in Medicine, 2012, 68, 349-352.	1.9	27
190	Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T. Human Brain Mapping, 2018, 39, 2426-2441.	1.9	27
191	Cannabis use in early psychosis is associated with reduced glutamate levels in the prefrontal cortex. Psychopharmacology, 2018, 235, 13-22.	1.5	27
192	Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model. Frontiers in Neuroenergetics, 2009, 1, 6.	5.3	26
193	Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T. Magnetic Resonance Imaging, 2009, 27, 1011-1018.	1.0	26
194	1 Hâ€{ 13 C] NMR spectroscopy of the rat brain during infusion of [2―13 C] acetate at 14.1 T. Magnetic Resonance in Medicine, 2010, 64, 334-340.	1.9	26
195	N-Acetyl-Cysteine Supplementation Improves Functional Connectivity Within the Cingulate Cortex in Early Psychosis: A Pilot Study. International Journal of Neuropsychopharmacology, 2019, 22, 478-487.	1.0	25
196	In vivo observation of lactate methyl proton magnetization transfer in rat C6 glioma. Magnetic Resonance in Medicine, 1999, 41, 676-685.	1.9	24
197	Nonâ€invasive quantification of brain glycogen absolute concentration. Journal of Neurochemistry, 2008, 107, 1414-1423.	2.1	24
198	Deep thiopental anesthesia alters steadyâ€state glucose homeostasis but not the neurochemical profile of rat cortex. Journal of Neuroscience Research, 2010, 88, 413-419.	1.3	24

#	Article	IF	CITATIONS
199	Definition and quantification of acute inflammatory white matter injury in the immature brain by MRI/MRS at high magnetic field. Pediatric Research, 2014, 75, 415-423.	1.1	24
200	Hyperpolarized 13C lactate as a substrate for in vivo metabolic studies in skeletal muscle. Metabolomics, 2014, 10, 986-994.	1.4	24
201	The relationship between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI studies from 1.5T to 7T. NeuroImage, 2021, 231, 117864.	2.1	24
202	Clinical Neuroimaging Using 7 T MRI: Challenges and Prospects. Journal of Neuroimaging, 2018, 28, 5-13.	1.0	24
203	Elucidation of the role of fructose 2,6-bisphosphate in the regulation of glucose fluxes in mice usingin vivo13C NMR measurements of hepatic carbohydrate metabolism. FEBS Journal, 2002, 269, 4418-4426.	0.2	23
204	Brain NAD Is Associated With ATP Energy Production and Membrane Phospholipid Turnover in Humans. Frontiers in Aging Neuroscience, 2020, 12, 609517.	1.7	23
205	Distinct contributions of Brodmann areas 1 and 2 to body ownership. Social Cognitive and Affective Neuroscience, 2015, 10, 1449-1459.	1.5	22
206	Assessment of Metabolic Fluxes in the Mouse Brain <i>in Vivo</i> Using ¹ H-[¹³ C] NMR Spectroscopy at 14.1 Tesla. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 759-765.	2.4	22
207	Evolution of the neurochemical profiles in the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1283-1298.	2.4	22
208	BOLD responses to trigeminal nerve stimulation. Magnetic Resonance Imaging, 2010, 28, 1143-1151.	1.0	21
209	Effect of Manganese Chloride on the Neurochemical Profile of the Rat Hypothalamus. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2324-2333.	2.4	21
210	Highâ€resolution spatial mapping of changes in the neurochemical profile after focal ischemia in mice. NMR in Biomedicine, 2012, 25, 247-254.	1.6	21
211	Brain energy metabolism measured by ¹³ <scp>C</scp> magnetic resonance spectroscopy in vivo upon infusion of [3â€ ¹³ <scp>C</scp>]lactate. Journal of Neuroscience Research, 2015, 93, 1009-1018.	1.3	21
212	Synchronization device for electrocardiography-gated echo-planar imaging Radiology, 1995, 197, 311-313.	3.6	20
213	The rateâ€limiting step for glucose transport into the hypothalamus is across the blood–hypothalamus interface. Journal of Neurochemistry, 2009, 109, 38-45.	2.1	20
214	Non-Invasive Diagnostic Biomarkers for Estimating the Onset Time of Permanent Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1848-1855.	2.4	20
215	Effect of acute hyperglycemia on visual cortical activation as measured by functional MRI. Journal of Neuroscience Research, 2000, 62, 279-285.	1.3	19
216	Mathematical modeling of13C label incorporation of the TCA cycle: The concept of composite precursor function. Journal of Neuroscience Research, 2007, 85, 3304-3317.	1.3	19

#	Article	IF	CITATIONS
217	Quantification of brain glycogen concentration and turnover through localized ¹³ C NMR of both the C1 and C6 resonances. NMR in Biomedicine, 2010, 23, 270-276.	1.6	19
218	Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery. Neurochemical Research, 2017, 42, 1629-1635.	1.6	19
219	Investigating the variability of cardiac pulse artifacts across heartbeats in simultaneous EEG-fMRI recordings: A 7T study. NeuroImage, 2019, 191, 21-35.	2.1	19
220	Direct <i>in vivo</i> measurement of glycine and the neurochemical profile in the rat medulla oblongata. NMR in Biomedicine, 2010, 23, 1097-1102.	1.6	18
221	Diffusion tensor echo planar imaging using surface coil transceiver with a semiadiabatic RF pulse sequence at 14.1T. Magnetic Resonance in Medicine, 2011, 65, 732-737.	1.9	18
222	Investigation of field and diffusion time dependence of the diffusionâ€weighted signal at ultrahigh magnetic fields. NMR in Biomedicine, 2013, 26, 1251-1257.	1.6	18
223	A doubleâ€quadrature radiofrequency coil design for protonâ€decoupled carbonâ€13 magnetic resonance spectroscopy in humans at 7T. Magnetic Resonance in Medicine, 2015, 73, 894-900.	1.9	18
224	Probing cardiac metabolism by hyperpolarized 13 <scp>C MR</scp> using an exclusively endogenous substrate mixture and photoâ€induced nonpersistent radicals. Magnetic Resonance in Medicine, 2018, 79, 2451-2459.	1.9	18
225	Combined deletion of Glut1 and Glut3 impairs lung adenocarcinoma growth. ELife, 2020, 9, .	2.8	18
226	Direct validation of in vivo localized13C MRS measurements of brain glycogen. Magnetic Resonance in Medicine, 2007, 57, 243-248.	1.9	17
227	<i>In vivo</i> metabolic profiling of gliomaâ€initiating cells using proton magnetic resonance spectroscopy at 14.1 Tesla. NMR in Biomedicine, 2012, 25, 506-513.	1.6	17
228	<i>In vivo</i> brain macromolecule signals in healthy and glioblastoma mouse models: ¹ H magnetic resonance spectroscopy, postâ€processing and metabolite quantification at 14.1 T. Journal of Neurochemistry, 2014, 129, 806-815.	2.1	17
229	In vivo ¹ H NMR measurement of glycine in rat brain at 9.4 T at short echo time. Magnetic Resonance in Medicine, 2008, 60, 727-731.	1.9	16
230	Feasibility of direct mapping of cerebral fluorodeoxyâ€Dâ€glucose metabolism in situ at subcellular resolution using soft Xâ€ray fluorescence. Journal of Neuroscience Research, 2013, 91, 1050-1058.	1.3	16
231	<i>In vivo</i> characterization of brain metabolism by ¹ H MRS, ¹³ C MRS and ¹⁸ FDG PET reveals significant glucose oxidation of invasively growing glioma cells. International Journal of Cancer, 2018, 143, 127-138.	2.3	16
232	InÂvivo ¹³ C MRS in the mouse brain at 14.1 Tesla and metabolic flux quantification under infusion of [1,6- ¹³ C ₂]glucose. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1701-1714.	2.4	16
233	Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology, 2020, 45, 2048-2057.	2.8	16
234	A method for rapid evaluation of saturation factors inin vivo surface coil NMR spectroscopy using B1-insensitive pulse cycles. NMR in Biomedicine, 1990, 3, 265-271.	1.6	15

#	Article	IF	CITATIONS
235	Determination of saturation factors in31P NMR spectra of the developing human brain. Magnetic Resonance in Medicine, 1993, 29, 7-11.	1.9	15
236	Relaxivity of Gd-based contrast agents on X nuclei with long intrinsic relaxation times in aqueous solutions. Magnetic Resonance Imaging, 2007, 25, 821-825.	1.0	15
237	Detection of neuronal activity and metabolism in a model of dehydrationâ€induced anorexia in rats at 14.1 T using manganeseâ€enhanced MRI and ¹ H MRS. NMR in Biomedicine, 2011, 24, 1326-13	3 6 .	15
238	In vivo Structural Imaging of the Cerebellum, the Contribution of Ultra-High Fields. Cerebellum, 2012, 11, 384-391.	1.4	15
239	Imaging of prolonged BOLD response in the somatosensory cortex of the rat. NMR in Biomedicine, 2015, 28, 414-421.	1.6	15
240	Hyperpolarized ⁶ Li as a probe for hemoglobin oxygenation level. Contrast Media and Molecular Imaging, 2016, 11, 41-46.	0.4	15
241	Social isolation stress and chronic glutathione deficiency have a common effect on the glutamineâ€ŧoâ€glutamate ratio and <i>myo</i> â€ŧnositol concentration in the mouse frontal cortex. Journal of Neurochemistry, 2017, 142, 767-775.	2.1	15
242	Increased hepatic fatty acid polyunsaturation precedes ectopic lipid deposition in the liver in adaptation to high-fat diets in mice. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 341-354.	1.1	15
243	Non-Invasive Measurements of the Cerebral Steady-State Glucose Concentration and Transport in Humans by 13C Nuclear Magnetic Resonance. Advances in Experimental Medicine and Biology, 1993, 331, 35-40.	0.8	15
244	Uncovering hidden in vivo resonances using editing based on localized TOCSY. Magnetic Resonance in Medicine, 2005, 53, 783-789.	1.9	14
245	Experimental peripheral arterial disease: new insights into muscle glucose uptake, macrophage, and T-cell polarization during early and late stages. Physiological Reports, 2014, 2, e00234.	0.7	14
246	Stroking or Buzzing? A Comparison of Somatosensory Touch Stimuli Using 7 Tesla fMRI. PLoS ONE, 2015, 10, e0134610.	1.1	14
247	Physiological noise in human cerebellar fMRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2015, 28, 485-492.	1.1	14
248	Energy metabolism in the rat cortex under thiopental anaesthesia measured <i>In Vivo</i> by ¹³ C MRS. Journal of Neuroscience Research, 2017, 95, 2297-2306.	1.3	14
249	Comparison of three commercially available radio frequency coils for human brain imaging at 3 Tesla. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 53-61.	1.1	13
250	Refined Analysis of Brain Energy Metabolism Using In Vivo Dynamic Enrichment of 13C Multiplets. ASN Neuro, 2016, 8, 175909141663234.	1.5	13
251	Progress towards inÂvivo brain 13C-MRS in mice: Metabolic flux analysis in small tissue volumes. Analytical Biochemistry, 2017, 529, 229-244.	1.1	13
252	Hyperpolarized 13C-glucose magnetic resonance highlights reduced aerobic glycolysis in vivo in infiltrative glioblastoma. Scientific Reports, 2021, 11, 5771.	1.6	13

#	Article	IF	CITATIONS
253	Increase of [18F]FLT Tumor Uptake In Vivo Mediated by FdUrd: Toward Improving Cell Proliferation Positron Emission Tomography. Molecular Imaging and Biology, 2011, 13, 321-331.	1.3	12
254	Which prior knowledge? Quantification of in vivo brain ¹³ C MR spectra following ¹³ C glucose infusion using AMARES. Magnetic Resonance in Medicine, 2013, 69, 1512-1522.	1.9	12
255	Characterization of hepatic fatty acids in mice with reduced liver fat by ultraâ€short echo time ¹ Hâ€MRS at 14.1 T <i>in vivo</i> . NMR in Biomedicine, 2015, 28, 1009-1020.	1.6	12
256	3D T 2-weighted imaging at 7T using dynamic kT-points on single-transmit MRI systems. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 347-358.	1.1	12
257	PIRACY: An Optimized Pipeline for Functional Connectivity Analysis in the Rat Brain. Frontiers in Neuroscience, 2021, 15, 602170.	1.4	12
258	A simple design for a double-tunable probe head for imaging and spectroscopy at high fields. Magnetic Resonance in Medicine, 1990, 15, 128-134.	1.9	11
259	A localization method for the measurement of fast relaxing13C NMR signals in humans at high magnetic fields. Applied Magnetic Resonance, 2005, 29, 159-169.	0.6	11
260	Editing through multiple bonds: Threonine detection. Magnetic Resonance in Medicine, 2008, 59, 245-251.	1.9	11
261	Eddy current effects on a clinical 7T-68Âcm bore scanner. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2010, 23, 39-43.	1.1	11
262	Single spin-echo T 2 relaxation times of cerebral metabolites at 14.1 T in the in vivo rat brain. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2013, 26, 549-554.	1.1	11
263	Brain Glucose Transport and Phosphorylation Under Acute Insulin-Induced Hypoglycemia in Mice: An ¹⁸ F-FDG PET Study. Journal of Nuclear Medicine, 2013, 54, 2153-2160.	2.8	11
264	Parallel imaging with phase scrambling. Magnetic Resonance in Medicine, 2015, 73, 1407-1419.	1.9	11
265	Fast low-specific absorption rate B ₀ -mapping along projections at high field using two-dimensional radiofrequency pulses. Magnetic Resonance in Medicine, 2015, 73, 901-908.	1.9	11
266	Sexual dimorphism in hepatic lipids is associated with the evolution of metabolic status in mice. NMR in Biomedicine, 2017, 30, e3761.	1.6	11
267	Prospective head motion correction using FIDâ€guided onâ€demand image navigators. Magnetic Resonance in Medicine, 2017, 78, 193-203.	1.9	11
268	Feasibility of in vivo measurement of glucose metabolism in the mouse hypothalamus by ¹ Hâ€{ ¹³ C] MRS at 14.1T. Magnetic Resonance in Medicine, 2018, 80, 874-884.	1.9	11
269	Non-invasive31P magnetic resonance spectroscopy revealed McArdle disease in an asymptomatic child. European Journal of Pediatrics, 1990, 149, 483-486.	1.3	10
270	A Two-Compartment Mathematical Model of Neuroglial Metabolism Using [1-11C] Acetate. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 548-559.	2.4	10

#	Article	IF	CITATIONS
271	A comparison of in vivo ¹³ C MR brain glycogen quantification at 9.4 and 14.1 T. Magnetic Resonance in Medicine, 2012, 67, 1523-1527.	1.9	9
272	Improved temporal resolution for functional studies with reduced number of segments with threeâ€dimensional echo planar imaging. Magnetic Resonance in Medicine, 2014, 72, 786-792.	1.9	9
273	<scp>MRS</scp> glucose mapping and <scp>PET</scp> joining forces: reâ€evaluation of the lumped constant in the rat brain under isoflurane anaesthesia. Journal of Neurochemistry, 2014, 129, 672-682.	2.1	9
274	Early detection of human glioma sphere xenografts in mouse brain using diffusion MRI at 14.1 T. NMR in Biomedicine, 2016, 29, 1577-1589.	1.6	9
275	Multi-slice passband bSSFP for human and rodent fMRI at ultra-high field. Journal of Magnetic Resonance, 2019, 305, 31-40.	1.2	9
276	Magnetic resonance spectroscopy in the rodent brain: Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4325.	1.6	9
277	Principles of the measurement of neuro-glial metabolism using in vivo 13C NMR spectroscopy. Advances in Molecular and Cell Biology, 2003, , 409-433.	0.1	8
278	Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism. Analytical Biochemistry, 2017, 529, 117-126.	1.1	8
279	In Vivo Heteronuclear Magnetic Resonance Spectroscopy. Methods in Molecular Biology, 2018, 1718, 169-187.	0.4	8
280	High Magnetic Fields for Imaging Cerebral Morphology, Function, and Biochemistry. Biological Magnetic Resonance, 2006, , 285-342.	0.4	8
281	Chronic Delivery of Antibody Fragments Using Immunoisolated Cell Implants as a Passive Vaccination Tool. PLoS ONE, 2011, 6, e18268.	1.1	7
282	3-D Residual Eddy Current Field Characterisation: Applied to Diffusion Weighted Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 2013, 32, 1515-1525.	5.4	7
283	¹³ C Dynamic Nuclear Polarization using SA-BDPA at 6.7 T and 1.1 K: Coexistence of Pure Thermal Mixing and Well-Resolved Solid Effect. Journal of Physical Chemistry Letters, 2020, 11, 6873-6879.	2.1	7
284	Measuring Glycolytic Activity with Hyperpolarized [2H7, U-13C6] D-Glucose in the Naive Mouse Brain under Different Anesthetic Conditions. Metabolites, 2021, 11, 413.	1.3	7
285	In Vivo Longitudinal 1H MRS Study of Transgenic Mouse Models of Prion Disease in the Hippocampus and Cerebellum at 14.1ÂT. Neurochemical Research, 2015, 40, 2639-2646.	1.6	6
286	Impact of aerobic exercise type on blood flow, muscle energy metabolism, and mitochondrial biogenesis in experimental lower extremity artery disease. Scientific Reports, 2020, 10, 14048.	1.6	6
287	Snapshot gradient-recalled echo-planar images of rat brains at long echo time at 9.4 T. Magnetic Resonance Imaging, 2008, 26, 954-960.	1.0	5
288	Ultra-high field birdcage coils: A comparison study at 14.1T. , 2014, 2014, 2360-3.		5

17

#	Article	IF	CITATIONS
289	Localized Single-Voxel Magnetic Resonance Spectroscopy, Water Suppression, and Novel Approaches for Ultrashort Echo-Time Measurements. , 2014, , 15-30.		5
290	Correcting surface coil excitation inhomogeneities in single-shot SPEN MRI. Journal of Magnetic Resonance, 2015, 259, 199-206.	1.2	5
291	Diffusionâ€weighted MRS of acetate in the rat brain. NMR in Biomedicine, 2017, 30, e3768.	1.6	5
292	Glucose transporter 2 mediates the hypoglycemia-induced increase in cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1725-1736.	2.4	5
293	Dipole-Fed Rectangular Dielectric Resonator Antennas for Magnetic Resonance Imaging at 7ÂT: The Impact of Quasi-Transverse Electric Modes on Transmit Field Distribution. Frontiers in Physics, 2021, 9,	1.0	5
294	Selective resonance suppression ¹ Hâ€{ ¹³ C] NMR spectroscopy with asymmetric adiabatic RF pulses. Magnetic Resonance in Medicine, 2009, 61, 260-266.	1.9	4
295	Echo-time independent signal modulations for strongly coupled systems in triple echo localization schemes: An extension of S-PRESS editing. Journal of Magnetic Resonance, 2010, 203, 108-112.	1.2	4
296	Continuous arterial spin labeling of mouse cerebral blood flow using an actively-detuned two-coil system at 9.4T. , 2011, 2011, 6993-6.		4
297	Excitatory/inhibitory neuronal metabolic balance in mouse hippocampus upon infusion of [U- ¹³ C ₆]glucose. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 282-297.	2.4	4
298	Cerebral Glucose Transport and Homeostasis. Advances in Neurobiology, 2012, , 655-673.	1.3	4
299	Late postâ€natal neurometabolic development in healthy male rats using 1 H and 31 P magnetic resonance spectroscopy. Journal of Neurochemistry, 2021, 157, 508-519.	2.1	4
300	Elucidation of the role of fructose 2,6-bisphosphate in the regulation of glucose fluxes in mice using in vivo (13)C NMR measurements of hepatic carbohydrate metabolism. FEBS Journal, 2002, 269, 4418-26.	0.2	4
301	Comparison of two approaches to model the macromolecule spectrum for the quantification of short TE $<\!sup>\!1<\!/sup>\!H$ MRS spectra. , 2008, , .		3
302	Direct mapping of ¹⁹ F in ¹⁹ FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence. Journal of Physics: Conference Series, 2013, 463, 012003.	0.3	3
303	Phaseâ€based manganese enhanced MRI, a new methodology to enhance brain cytoarchitectural contrast and study manganese uptake. Magnetic Resonance in Medicine, 2014, 72, 1246-1256.	1.9	3
304	Evaluation of the whole auditory pathway using high-resolution and functional MRI at 7T parallel-transmit. PLoS ONE, 2021, 16, e0254378.	1.1	3
305	[13C]bicarbonate labelled from hyperpolarized [1-13C]pyruvate is an in vivo marker of hepatic gluconeogenesis in fasted state. Communications Biology, 2022, 5, 10.	2.0	3
306	Optimized MEGA‧PECIAL for <i>in vivo</i> glutamine detection in the rat brain at 14.1 T. NMR in Biomedicine, 2014, 27, 1151-1158.	1.6	2

#	Article	IF	CITATIONS
307	Quantitative activity-induced manganese-dependent MRI for characterizing cortical layers in the primary somatosensory cortex of the rat. Brain Structure and Function, 2016, 221, 695-707.	1.2	2
308	Metabolic and perfusion responses to acute hypoglycemia in the rat cortex: A nonâ€invasive magnetic resonance approach. Journal of Neurochemistry, 2020, 154, 71-83.	2.1	2
309	Radicalâ€free hyperpolarized MRI using endogenously occurring pyruvate analogues and UVâ€induced nonpersistent radicals. NMR in Biomedicine, 2021, 34, e4584.	1.6	2
310	Field mapping without reference scan using asymmetric echo-planar techniques. , 2000, 43, 319.		2
311	Segmenting electroencephalography wires reduces radiofrequency shielding artifacts in simultaneous electroencephalography and functional magnetic resonance imaging at 7 T. Magnetic Resonance in Medicine, 2022, , .	1.9	2
312	In vivo1H NMR spectroscopy and neurochemistry. Quantification matters. Magnetic Resonance in Medicine, 2005, 54, 1048-1049.	1.9	1
313	Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner. Magnetic Resonance in Medicine, 2016, 76, spcone-spcone.	1.9	1
314	T52. N-ACETYL-CYSTEINE ADD-ON TREATMENT LEADS TO AN IMPROVEMENT OF FORNIX WHITE MATTER INTEGRITY IN EARLY PSYCHOSIS. Schizophrenia Bulletin, 2018, 44, S133-S134.	2.3	1
315	Improved offâ€resonance phase behavior using a phaseâ€inverted adiabatic halfâ€passage pulse for ¹³ C MRS in humans at 7 T. NMR in Biomedicine, 2019, 32, e4171.	1.6	1
316	In-Vivo NMR Spectroscopy of the Brain at High Fields. , 2006, , 373-409.		1
317	Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magnetic Resonance in Medicine, 2016, 75, spcone.	1.9	0
318	F44. AN ADD-ON TRIAL WITH N-ACETYL-CYSTEINE (NAC) IN EARLY PSYCHOSIS PATIENTS: TOWARDS BIOMARKER GUIDED TREATMENT. Schizophrenia Bulletin, 2018, 44, S236-S236.	2.3	0
319	Measurements of Glycogen Metabolism in the Living Brain. Advances in Neurobiology, 2012, , 699-706.	1.3	0