Frank T Burbrink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/807645/publications.pdf

Version: 2024-02-01

92 papers 6,036 citations

71102 41 h-index 76900 74 g-index

97 all docs 97
docs citations

97 times ranked 6027 citing authors

#	Article	IF	CITATIONS
1	Ecological Divergence and the History of Gene Flow in the Nearctic Milksnakes (<i>Lampropeltis) Tj ETQq1</i>	1 0.784314	rgBT /Overlo
2	Complex genetic patterns and distribution limits mediated by native congeners of the worldwide invasive redâ€eared slider turtle. Molecular Ecology, 2022, 31, 1766-1782.	3.9	4
3	Drivers of unique and asynchronous population dynamics in Malagasy herpetofauna. Journal of Biogeography, 2022, 49, 600-616.	3.0	7
4	Identifying traits that enable lizard adaptation to different habitats. Journal of Biogeography, 2022, 49, 104-116.	3.0	2
5	Empirical and philosophical problems with the subspecies rank. Ecology and Evolution, 2022, 12, .	1.9	26
6	Phylogenetic relationships and biogeographic range evolution in cat-eyed snakes, <i>Boiga </i> (Serpentes: Colubridae). Zoological Journal of the Linnean Society, 2021, 192, 169-184.	2.3	10
7	Resolving spatial complexities of hybridization in the context of the gray zone of speciation in North American ratsnakes (<i>Pantherophis obsoletus</i> complex). Evolution; International Journal of Organic Evolution, 2021, 75, 260-277.	2.3	32
8	A new snake species of the genus <i>Gonyosoma</i> Wagler, 1828 (Serpentes: Colubridae) from Hainan Island, China. Zoological Research, 2021, 42, 487-491.	2.1	3
9	Quaternary climatic fluctuations influence the demographic history of two species of sky-island endemic amphibians in the Neotropics. Molecular Phylogenetics and Evolution, 2021, 160, 107113.	2.7	15
10	Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. Ichthyology and Herpetology, 2021, 109, .	0.8	23
11	Morphological description of a new specimen of Herpetoreas burbrinki Guo et al 2014 (Serpentes:) Tj ETQq $1\ 1$	0.784314 rg	gBT /Overloc
12	Additional comments on the types and nomina of several North American ratsnakes (Pantherophis) Tj ETQq0 0	0 rgBT/Ove	rlock 10 Tf 5
13	Interrogating Genomic-Scale Data for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key Traditional Morphological Relationships. Systematic Biology, 2020, 69, 502-520.	5.6	191
14	Biogeographic barriers, Pleistocene refugia, and climatic gradients in the southeastern Nearctic drive diversification in cornsnakes (<i>Pantherophis guttatus</i> complex). Molecular Ecology, 2020, 29, 797-811.	3.9	32
15	Environmental heterogeneity and not vicariant biogeographic barriers generate communityâ€wide population structure in desertâ€adapted snakes. Molecular Ecology, 2019, 28, 4535-4548.	3.9	49
16	Femaleâ€biased gape and bodyâ€size dimorphism in the New World watersnakes (tribe: Thamnophiini) oppose predictions from Rensch's rule. Ecology and Evolution, 2019, 9, 9624-9633.	1.9	7
17	Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180248.	4.0	32

The Origins and Diversification of the Exceptionally Rich Gemsnakes (Colubroidea: Lamprophiidae:) Tj ETQq0 0 0 rg $\frac{BT}{2.6}$ /Overlock 10 Tf 50 rg

18

#	Article	IF	Citations
19	Exploring Chihuahuan Desert diversification in the gray-banded kingsnake, Lampropeltis alterna (Serpentes: Colubridae). Molecular Phylogenetics and Evolution, 2019, 131, 211-218.	2.7	16
20	The Biogeography of Deep Time Phylogenetic Reticulation. Systematic Biology, 2018, 67, 743-755.	5.6	61
21	Unrecognized species diversity and new insights into colour pattern polymorphism within the widespread Malagasy snake <i>Mimophis</i> (Serpentes: Lamprophiidae). Systematics and Biodiversity, 2018, 16, 229-244.	1.2	10
22	Hibernation in bats (Mammalia: Chiroptera) did not evolve through positive selection of leptin. Ecology and Evolution, 2018, 8, 12576-12596.	1.9	10
23	Phylogeography of Muller's termite frog suggests the vicariant role of the Central Brazilian Plateau. Journal of Biogeography, 2018, 45, 2508-2519.	3.0	22
24	Using phylogenomics to understand the link between biogeographic origins and regional diversification in ratsnakes. Molecular Phylogenetics and Evolution, 2017, 111, 206-218.	2.7	36
25	Estimating synchronous demographic changes across populations using <scp>hABC</scp> and its application for a herpetological community from northeastern Brazil. Molecular Ecology, 2017, 26, 4756-4771.	3.9	79
26	Coalescent Species Tree Inference of <i>Coluber </i> and <i>Masticophis </i> Copeia, 2017, 105, 640-648.	1.3	17
27	Asynchronous diversification of snakes in the North American warm deserts. Journal of Biogeography, 2017, 44, 461-474.	3.0	40
28	Host susceptibility to snake fungal disease is highly dispersed across phylogenetic and functional trait space. Science Advances, 2017, 3, e1701387.	10.3	42
29	Complex longitudinal diversification across South China and Vietnam in Stejneger's pit viper, <i>Viridovipera stejnegeri</i> (Schmidt, 1925) (Reptilia: Serpentes: Viperidae). Molecular Ecology, 2016, 25, 2920-2936.	3.9	18
30	The Cat-eyed Snakes of Madagascar: Phylogeny and Description of a New Species of Madagascarophis (Serpentes: Lamprophiidae) from the Tsingy of Ankarana. Copeia, 2016, 104, 712-721.	1.3	11
31	Asynchronous demographic responses to Pleistocene climate change in Eastern Nearctic vertebrates. Ecology Letters, 2016, 19, 1457-1467.	6.4	59
32	Comparing species tree estimation with large anchored phylogenomic and small Sanger-sequenced molecular datasets: an empirical study on Malagasy pseudoxyrhophiine snakes. BMC Evolutionary Biology, 2015, 15, 221.	3.2	54
33	Speciation with gene flow in whiptail lizards from a Neotropical xeric biome. Molecular Ecology, 2015, 24, 5957-5975.	3.9	44
34	Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis). PLoS ONE, 2015, 10, e0128543.	2.5	13
35	Contrasting models of parityâ€mode evolution in squamate reptiles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 467-472.	1.3	14
36	Both traits and phylogenetic history influence community structure in snakes over steep environmental gradients. Ecography, 2015, 38, 1036-1048.	4.5	22

#	Article	IF	CITATIONS
37	Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151700.	2.6	16
38	Considering gene flow when using coalescent methods to delimit lineages of North American pitvipers of the genus <i>Agkistrodon</i> Zoological Journal of the Linnean Society, 2015, 173, 505-526.	2.3	48
39	Phylogenetic niche conservatism and the evolutionary basis of ecological speciation. Biological Reviews, 2015, 90, 1248-1262.	10.4	233
40	A Taxonomic Revision of Boas (Serpentes: Boidae). Zootaxa, 2014, 3846, 249-60.	0.5	40
41	The phylogenetic position and taxonomic status of the Rainbow Tree Snake Gonyophis margaritatus (Peters, 1871) (Squamata: Colubridae)Â. Zootaxa, 2014, 3881, 532-48.	0.5	16
42	Assessing species boundaries and the phylogenetic position of the rare Szechwan ratsnake, Euprepiophis perlaceus (Serpentes: Colubridae), using coalescent-based methods. Molecular Phylogenetics and Evolution, 2014, 70, 130-136.	2.7	18
43	Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecology Letters, 2014, 17, 13-21.	6.4	256
44	Ecological and evolutionary determinants of species richness and phylogenetic diversity for island snakes. Global Ecology and Biogeography, 2014, 23, 848-856.	5.8	25
45	Coalescent Species Delimitation in Milksnakes (Genus Lampropeltis) and Impacts on Phylogenetic Comparative Analyses. Systematic Biology, 2014, 63, 231-250.	5.6	109
46	Body size distributions at community, regional or taxonomic scales do not predict the direction of trait-driven diversification in snakes in the United States. Global Ecology and Biogeography, 2014, 23, 490-503.	5.8	8
47	Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia). Molecular Phylogenetics and Evolution, 2014, 81, 221-231.	2.7	86
48	A hybrid phylogenetic–phylogenomic approach for species tree estimation in African Agama lizards with applications to biogeography, character evolution, and diversification. Molecular Phylogenetics and Evolution, 2014, 79, 215-230.	2.7	77
49	Finding arboreal snakes in an evolutionary tree: phylogenetic placement and systematic revision of the Neotropical birdsnakes. Journal of Zoological Systematics and Evolutionary Research, 2014, 52, 257-264.	1.4	12
50	Phylogeographical structure within <i>Boa constrictor imperator</i> across the lowlands and mountains of Central America and Mexico. Journal of Biogeography, 2014, 41, 2371-2384.	3.0	34
51	Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses. Trends in Ecology and Evolution, 2013, 28, 729-736.	8.7	101
52	Molecular systematics and historical biogeography of tree boas (Corallus spp.). Molecular Phylogenetics and Evolution, 2013, 66, 953-959.	2.7	36
53	Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Molecular Phylogenetics and Evolution, 2013, 66, 969-978.	2.7	86
54	Understanding the formation of ancient intertropical disjunct distributions using Asian and Neotropical hinged-teeth snakes (Sibynophis and Scaphiodontophis: Serpentes: Colubridae). Molecular Phylogenetics and Evolution, 2013, 66, 254-261.	2.7	31

#	Article	IF	CITATIONS
55	Lycodon and Dinodon: One genus or two? Evidence from molecular phylogenetics and morphological comparisons. Molecular Phylogenetics and Evolution, 2013, 68, 144-149.	2.7	25
56	Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12738-12743.	7.1	408
57	Out of Asia: Natricine snakes support the Cenozoic Beringian Dispersal Hypothesis. Molecular Phylogenetics and Evolution, 2012, 63, 825-833.	2.7	78
58	Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology and Evolution, 2012, 27, 480-488.	8.7	716
59	Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4817-4826.	2.6	67
60	When are adaptive radiations replicated in areas? Ecological opportunity and unexceptional diversification in West Indian dipsadine snakes (Colubridae: Alsophiini). Journal of Biogeography, 2012, 39, 465-475.	3.0	41
61	EXTINCTION, ECOLOGICAL OPPORTUNITY, AND THE ORIGINS OF GLOBAL SNAKE DIVERSITY. Evolution; International Journal of Organic Evolution, 2012, 66, 163-178.	2.3	122
62	Morphological Differentiation in Ouachita Mountain Endemic Salamanders. Herpetologica, 2011, 67, 355-368.	0.4	6
63	THE IMPACT OF GENE-TREE/SPECIES-TREE DISCORDANCE ON DIVERSIFICATION-RATE ESTIMATION. Evolution; International Journal of Organic Evolution, 2011, 65, 1851-1861.	2.3	34
64	Speciation at the Mogollon Rim in the Arizona Mountain Kingsnake (Lampropeltis pyromelana). Molecular Phylogenetics and Evolution, 2011, 60, 445-454.	2.7	51
65	The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Molecular Phylogenetics and Evolution, 2011, 58, 329-342.	2.7	265
66	Local-scale environmental variation generates highly divergent lineages associated with stream drainages in a terrestrial salamander, Plethodon caddoensis. Molecular Phylogenetics and Evolution, 2011, 59, 399-411.	2.7	28
67	Evolution and Taxonomy of Snakes. Reproductive Biology and Phylogeny Series, 2011, , 19-53.	1.1	18
68	HOW DOES ECOLOGICAL OPPORTUNITY INFLUENCE RATES OF SPECIATION, EXTINCTION, AND MORPHOLOGICAL DIVERSIFICATION IN NEW WORLD RATSNAKES (TRIBE LAMPROPELTINI)?. Evolution; International Journal of Organic Evolution, 2010, 64, 934-943.	2.3	89
69	Does dispersal across an aquatic geographic barrier obscure phylogeographic structure in the diamond-backed watersnake (Nerodia rhombifer)?. Molecular Phylogenetics and Evolution, 2010, 57, 552-560.	2.7	28
70	Historical versus contemporary migration in fragmented populations. Molecular Ecology, 2010, 19, 5321-5323.	3.9	7
71	Hard and soft allopatry: physically and ecologically mediated modes of geographic speciation. Journal of Biogeography, 2010, 37, 2005-2015.	3.0	64
72	Systematics of the Common Kingsnake (Lampropeltis getula; Serpentes: Colubridae) and the burden of heritage in taxonomy. Zootaxa, 2009, 2241, 22-32.	0.5	52

#	Article	IF	CITATIONS
73	Phylogeographic and demographic effects of Pleistocene climatic fluctuations in a montane salamander, <i>Plethodon fourchensis</i> Molecular Ecology, 2009, 18, 2243-2262.	3.9	84
74	Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, <i>Lampropeltis getula</i> . Molecular Ecology, 2009, 18, 3443-3457.	3.9	122
75	Can the tropical conservatism hypothesis explain temperate species richness patterns? An inverse latitudinal biodiversity gradient in the New World snake tribe Lampropeltini. Global Ecology and Biogeography, 2009, 18, 406-415.	5.8	7 5
76	Neogene diversification and taxonomic stability in the snake tribe Lampropeltini (Serpentes:) Tj ETQq0 0 0 rgBT /	Overlock 1	10 Tf 50 622 ⁻
77	2. Molecular Phylogeography of Snakes. , 2009, , 38-77.		12
78	Phylogeography of Diadophis punctatus: Extensive lineage diversity and repeated patterns of historical demography in a trans-continental snake. Molecular Phylogenetics and Evolution, 2008, 46, 1049-1070.	2.7	83
79	Phylogeography across a continent: The evolutionary and demographic history of the North American racer (Serpentes: Colubridae: Coluber constrictor). Molecular Phylogenetics and Evolution, 2008, 47, 274-288.	2.7	70
80	Demographic and phylogeographic histories of two venomous North American snakes of the genus Agkistrodon. Molecular Phylogenetics and Evolution, 2008, 48, 543-553.	2.7	61
81	Lineage diversification and historical demography of a sky island salamander, <i>Plethodon ouachitae</i> , from the Interior Highlands. Molecular Ecology, 2008, 17, 5315-5335.	3.9	87
82	The Taming of the Skew: Estimating Proper Confidence Intervals for Divergence Dates. Systematic Biology, 2008, 57, 317-328.	5.6	56
83	Claims of Potential Expansion throughout the U.S. by Invasive Python Species Are Contradicted by Ecological Niche Models. PLoS ONE, 2008, 3, e2931.	2.5	58
84	How and when did Old World ratsnakes disperse into the New World?. Molecular Phylogenetics and Evolution, 2007, 43, 173-189.	2.7	104
85	A phylogeny of the Lampropeltis mexicana complex (Serpentes: Colubridae) based on mitochondrial DNA sequences suggests evidence for species-level polyphyly within Lampropeltis. Molecular Phylogenetics and Evolution, 2007, 43, 674-684.	2.7	30
86	Inferring the phylogenetic position of Boa constrictor among the Boinae. Molecular Phylogenetics and Evolution, 2005, 34, 167-180.	2.7	52
87	A molecular approach to discerning the phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the Alethinophidia. Journal of Zoology, 2004, 263, 285-294.	1.7	50
88	Phylogeographic analysis of the cornsnake (Elaphe guttata) complex as inferred from maximum likelihood and Bayesian analyses. Molecular Phylogenetics and Evolution, 2002, 25, 465-476.	2.7	58
89	Systematics of the Eastern Ratsnake Complex (Elaphe obsoleta). Herpetological Monographs, 2001, 15, 1.	0.8	68
90	MITOCHONDRIAL DNA PHYLOGEOGRAPHY OF THE POLYTYPIC NORTH AMERICAN RAT SNAKE (ELAPHE) TJ ETQqi Evolution, 2000, 54, 2107-2118.	0 0 0 rgBT 2.3	/Overlock 10 472

#	Article	IF	CITATIONS
91	A riparian zone in southern Illinois as a potential dispersal corridor for reptiles and amphibians. Biological Conservation, 1998, 86, 107-115.	4.1	52
92	Uniting genetic and geographic databases to understand the relationship between latitude and population demography. Molecular Ecology Resources, 0 , , .	4.8	0