
## Patrick L Wintrode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8075005/publications.pdf Version: 2024-02-01



DATRICKÂL WINTRODE

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nature Methods, 2019, 16, 595-602.                                                            | 19.0 | 452       |
| 2  | How enzymes adapt: lessons from directed evolution. Trends in Biochemical Sciences, 2001, 26, 100-106.                                                                                                                       | 7.5  | 351       |
| 3  | Directed evolution study of temperature adaptation in a psychrophilic enzyme 1 1Edited by J. A. Wells.<br>Journal of Molecular Biology, 2000, 297, 1015-1026.                                                                | 4.2  | 243       |
| 4  | beta-Sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium<br>exchange. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>1510-1515.            | 7.1  | 218       |
| 5  | Thermodynamics of ubiquitin unfolding. Proteins: Structure, Function and Bioinformatics, 1994, 18, 246-253.                                                                                                                  | 2.6  | 170       |
| 6  | Cold Adaptation of a Mesophilic Subtilisin-like Protease by Laboratory Evolution. Journal of<br>Biological Chemistry, 2000, 275, 31635-31640.                                                                                | 3.4  | 128       |
| 7  | Protein Dynamics in a Family of Laboratory Evolved Thermophilic Enzymes. Journal of Molecular<br>Biology, 2003, 327, 745-757.                                                                                                | 4.2  | 96        |
| 8  | Energetics of target peptide recognition by calmodulin: A calorimetric study. Journal of Molecular<br>Biology, 1997, 266, 1050-1062.                                                                                         | 4.2  | 93        |
| 9  | Hydrogen/Deuterium Exchange-Mass Spectrometry: A Powerful Tool for Probing Protein Structure,<br>Dynamics and Interactions. Current Medicinal Chemistry, 2007, 14, 2344-2358.                                                | 2.4  | 93        |
| 10 | Conformational dynamics of a neurotransmitter:sodium symporter in a lipid bilayer. Proceedings of the United States of America, 2017, 114, E1786-E1795.                                                                      | 7.1  | 76        |
| 11 | Folding mechanism of the metastable serpin <i>α</i> <sub>1</sub> -antitrypsin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4467-4472.                                        | 7.1  | 67        |
| 12 | Crystal Structures of the Toll/Interleukin-1 Receptor (TIR) Domains from the Brucella Protein TcpB<br>and Host Adaptor TIRAP Reveal Mechanisms of Molecular Mimicry. Journal of Biological Chemistry,<br>2014, 289, 669-679. | 3.4  | 66        |
| 13 | Successes and challenges in simulating the folding of large proteins. Journal of Biological Chemistry, 2020, 295, 15-33.                                                                                                     | 3.4  | 56        |
| 14 | Effects of glycosylation on the stability and flexibility of a metastable protein: The human serpin $\hat{l}\pm 1$ -antitrypsin. International Journal of Mass Spectrometry, 2011, 302, 69-75.                               | 1.5  | 54        |
| 15 | Complementary Structural Mass Spectrometry Techniques Reveal Local Dynamics in Functionally<br>Important Regions of a Metastable Serpin. Structure, 2008, 16, 38-51.                                                         | 3.3  | 48        |
| 16 | IL-1 Family Cytokines Use Distinct Molecular Mechanisms to Signal through Their Shared Co-receptor.<br>Immunity, 2017, 47, 510-523.e4.                                                                                       | 14.3 | 48        |
| 17 | A Dimer Interface Mutation in Glyceraldehyde-3-Phosphate Dehydrogenase Regulates Its Binding to<br>AU-rich RNA. Journal of Biological Chemistry, 2015, 290, 1770-1785.                                                       | 3.4  | 47        |
| 18 | The <i>Helicobacter pylori</i> adhesin protein HopQ exploits the dimer interface of human CEACAMs to facilitate translocation of the oncoprotein CagA. EMBO Journal, 2018, 37, .                                             | 7.8  | 47        |

PATRICKÂL WINTRODE

| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Common coding variant in <i>SERPINA1</i> increases the risk for large artery stroke. Proceedings of the United States of America, 2017, 114, 3613-3618.                                                                                                                | 7.1  | 46        |
| 20 | Bacterial flagellar capping proteins adopt diverse oligomeric states. ELife, 2016, 5, .                                                                                                                                                                                | 6.0  | 46        |
| 21 | Interlaboratory Comparison of Hydrogen–Deuterium Exchange Mass Spectrometry Measurements of the Fab Fragment of NISTmAb. Analytical Chemistry, 2019, 91, 7336-7345.                                                                                                    | 6.5  | 44        |
| 22 | Allosteric Suppression of HIV-1 Reverse Transcriptase Structural Dynamics upon Inhibitor Binding.<br>Biophysical Journal, 2011, 100, 144-153.                                                                                                                          | 0.5  | 41        |
| 23 | Multi-state Unfolding of the Alpha Subunit of Tryptophan Synthase, a TIM Barrel Protein: Insights into<br>the Secondary Structure of the Stable Equilibrium Intermediates by Hydrogen Exchange Mass<br>Spectrometry. Journal of Molecular Biology, 2004, 341, 241-253. | 4.2  | 32        |
| 24 | The Structural Basis of Serpin Polymerization Studied by Hydrogen/Deuterium Exchange and Mass Spectrometry. Journal of Biological Chemistry, 2008, 283, 30804-30811.                                                                                                   | 3.4  | 31        |
| 25 | Serpin latency transition at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15414-15419.                                                                                                               | 7.1  | 31        |
| 26 | Solution Structural Dynamics of HIV-1 Reverse Transcriptase Heterodimer. Biochemistry, 2009, 48, 7646-7655.                                                                                                                                                            | 2.5  | 30        |
| 27 | Structure and dynamics of an α-fucosidase reveal a mechanism for highly efficient IgG transfucosylation. Nature Communications, 2020, 11, 6204.                                                                                                                        | 12.8 | 29        |
| 28 | Structure and Dynamics of FosA-Mediated Fosfomycin Resistance in Klebsiella pneumoniae and<br>Escherichia coli. Antimicrobial Agents and Chemotherapy, 2017, 61, .                                                                                                     | 3.2  | 28        |
| 29 | Structural energetics of barstar studied by differential scanning microcalorimetry. Protein Science, 1995, 4, 1528-1534.                                                                                                                                               | 7.6  | 27        |
| 30 | An Obligatory Intermediate Controls the Folding of the α-Subunit of Tryptophan Synthase, a TIM Barrel<br>Protein. Journal of Molecular Biology, 2005, 347, 911-919.                                                                                                    | 4.2  | 27        |
| 31 | Molecular Basis of Broad Spectrum <i>N</i> -Glycan Specificity and Processing of Therapeutic IgG<br>Monoclonal Antibodies by Endoglycosidase S2. ACS Central Science, 2019, 5, 524-538.                                                                                | 11.3 | 27        |
| 32 | Early Hydrophobic Collapse of α1-Antitrypsin Facilitates Formation of a Metastable State: Insights from<br>Oxidative Labeling and Mass Spectrometry. Journal of Molecular Biology, 2012, 423, 789-799.                                                                 | 4.2  | 24        |
| 33 | Antigen-Induced Allosteric Changes in a Human IgG1 Fc Increase Low-Affinity FcÎ <sup>3</sup> Receptor Binding.<br>Structure, 2020, 28, 516-527.e5.                                                                                                                     | 3.3  | 23        |
| 34 | Cooperative Unfolding of a Metastable Serpin to a Molten Globule Suggests a Link Between<br>Functional and Folding Energy Landscapes. Journal of Molecular Biology, 2007, 371, 245-255.                                                                                | 4.2  | 22        |
| 35 | Enhanced Molecular Mobility of Ordinarily Structured Regions Drives Polyglutamine Disease. Journal of Biological Chemistry, 2015, 290, 24190-24200.                                                                                                                    | 3.4  | 22        |
| 36 | Hydrogen/Deuterium Exchange Kinetics Demonstrate Long Range Allosteric Effects of Thumb Site 2<br>Inhibitors of Hepatitis C Viral RNA-dependent RNA Polymerase. Journal of Biological Chemistry, 2016,<br>291, 10078-10088.                                            | 3.4  | 22        |

PATRICKÂL WINTRODE

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Identification of a Region in the N-Terminus of Escherichia coli Lon That Affects ATPase, Substrate<br>Translocation and Proteolytic Activity. Journal of Molecular Biology, 2012, 418, 208-225.                                           | 4.2 | 21        |
| 38 | All-Atom Simulations Reveal How Single-Point Mutations Promote Serpin Misfolding. Biophysical<br>Journal, 2018, 114, 2083-2094.                                                                                                            | 0.5 | 19        |
| 39 | The Z Mutation Alters the Global Structural Dynamics of $\hat{I}\pm 1$ -Antitrypsin. PLoS ONE, 2014, 9, e102617.                                                                                                                           | 2.5 | 18        |
| 40 | Ligand-induced allostery in the interaction of the <i>Pseudomonas aeruginosa</i> heme binding<br>protein with heme oxygenase. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, 3421-3426.    | 7.1 | 18        |
| 41 | Local Conformational Flexibility Provides a Basis for Facile Polymer Formation in Human Neuroserpin.<br>Biophysical Journal, 2011, 101, 1758-1765.                                                                                         | 0.5 | 13        |
| 42 | Does Changing the Predicted Dynamics of a Phospholipase C Alter Activity and Membrane Binding?.<br>Biophysical Journal, 2013, 104, 185-195.                                                                                                | 0.5 | 11        |
| 43 | Imatinib binding to human c-Src is coupled to inter-domain allostery and suggests a novel kinase inhibition strategy. Scientific Reports, 2016, 6, 30832.                                                                                  | 3.3 | 11        |
| 44 | Small-Molecule Inhibitor of FosA Expands Fosfomycin Activity to Multidrug-Resistant Gram-Negative<br>Pathogens. Antimicrobial Agents and Chemotherapy, 2019, 63, .                                                                         | 3.2 | 11        |
| 45 | Monitoring dendrimer conformational transition using 19 F and 1 H 2 O NMR. Magnetic Resonance in Chemistry, 2019, 57, 861-872.                                                                                                             | 1.9 | 10        |
| 46 | A temperature-dependent conformational shift in p38α MAPK substrate–binding region associated with<br>changes in substrate phosphorylation profile. Journal of Biological Chemistry, 2019, 294, 12624-12637.                               | 3.4 | 9         |
| 47 | Conformational transition of a non-associative fluorinated amphiphile in aqueous solution. II.<br>Conformational transition <i>vs.</i> supramolecular assembly. RSC Advances, 2019, 9, 1956-1966.                                          | 3.6 | 9         |
| 48 | Modeling the native ensemble of PhuS using enhanced sampling MD and HDX-ensemble reweighting.<br>Biophysical Journal, 2021, 120, 5141-5157.                                                                                                | 0.5 | 7         |
| 49 | Probing Serpin Conformational Change Using Mass Spectrometry and Related Methods. Methods in Enzymology, 2011, 501, 325-350.                                                                                                               | 1.0 | 5         |
| 50 | Mass spectrometry in structural biology. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1187.                                                                                                                        | 2.3 | 3         |
| 51 | Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) Centroid Data Measured between 3.6 °C<br>and 25.4 °C for the Fab Fragment of NISTmAb. Journal of Research of the National Institute of<br>Standards and Technology, 2019, 124, 1-7. | 1.2 | 3         |
| 52 | Interpreting hydrogen-deuterium exchange experiments with molecular simulations: Tutorials and applications of the HDXer ensemble reweighting software [Article v1.0]. Living Journal of Computational Molecular Science, 2022, 3, .       | 6.4 | 3         |
| 53 | Neurotransmitter Transporter Conformational Dynamics using HDX-MS and Molecular Dynamics<br>Simulation. Biophysical Journal, 2018, 114, 207a.                                                                                              | 0.5 | 2         |
| 54 | Characterization of interaction between blood coagulation factor <scp>VIII</scp> and<br><scp>LRP1</scp> suggests dynamic binding by alternating complex contacts. Journal of Thrombosis<br>and Haemostasis, 0, , .                         | 3.8 | 2         |

PATRICKÂL WINTRODE

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A structure and function relationship study to identify the impact of the R721G mutation in the human mitochondrial lon protease. Archives of Biochemistry and Biophysics, 2021, 710, 108983. | 3.0 | 1         |
| 56 | Structural Changes in Monomeric HIV-RT Upon Binding the NNRTI Efavirenz. Biophysical Journal, 2009, 96, 446a.                                                                                 | 0.5 | 0         |
| 57 | HIV-1 Reverse Transcriptase Monomers Adopt Multiple Conformations inÂSolution. Biophysical Journal, 2012, 102, 46a-47a.                                                                       | 0.5 | 0         |
| 58 | Anchoring of PI-PLC to DMPC Bilayers Involves Specific Cation-PI Interactions. Biophysical Journal, 2012, 102, 78a-79a.                                                                       | 0.5 | 0         |
| 59 | Cation-PI Interactions as Specific Anchors for B. Thurigiensis Phosphoinositol-Specific<br>Phospholipase-C Binding to Phosphatidylcholine Bilayer. Biophysical Journal, 2013, 104, 536a.      | 0.5 | 0         |
| 60 | Remodeling KRAS. Structure, 2017, 25, 1323-1324.                                                                                                                                              | 3.3 | 0         |
| 61 | Determination of the Mechanism of RNA Regulation by CPSF30 Utilizing Both Biophysical and Structural Approaches. Biophysical Journal, 2019, 116, 503a.                                        | 0.5 | 0         |
| 62 | HDX-MS Guided Ensemble Reweighting Approach Characterizes a Large Conformational Rearrangement<br>in the Cytoplasmic Heme Binding Protein PhuS. Biophysical Journal, 2021, 120, 127a.         | 0.5 | 0         |
| 63 | Thumb II Site Inhibitor Allosterically Suppresses the Dynamics of HCV NS5B RNAâ€Dependent RNA<br>Polymerase. FASEB Journal, 2015, 29, LB81.                                                   | 0.5 | 0         |