Nina Bhardwaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8074313/publications.pdf

Version: 2024-02-01

274 papers 30,986 citations

80 h-index 168 g-index

292 all docs

292 docs citations

times ranked

292

32845 citing authors

#	Article	IF	CITATIONS
1	Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998, 392, 86-89.	13.7	2,161
2	Immunology of COVID-19: Current State of the Science. Immunity, 2020, 52, 910-941.	6.6	1,387
3	Consequences of Cell Death. Journal of Experimental Medicine, 2000, 191, 423-434.	4.2	1,334
4	Antigen-Specific Inhibition of Effector T Cell Function in Humans after Injection of Immature Dendritic Cells. Journal of Experimental Medicine, 2001, 193, 233-238.	4.2	1,268
5	Immature Dendritic Cells Phagocytose Apoptotic Cells via $\hat{l}\pm v\hat{l}^2$ 5 and CD36, and Cross-present Antigens to Cytotoxic T Lymphocytes. Journal of Experimental Medicine, 1998, 188, 1359-1368.	4.2	1,149
6	Expansion and Activation of CD103+ Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity, 2016, 44, 924-938.	6.6	857
7	Critical Role for CD103+/CD141+ Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell, 2016, 30, 324-336.	7.7	717
8	A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nature Medicine, 2018, 24, 1178-1191.	15.2	679
9	Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. Journal of Immunological Methods, 1996, 196, 121-135.	0.6	647
10	Therapeutic cancer vaccines. Nature Reviews Cancer, 2021, 21, 360-378.	12.8	630
11	Dendritic cell-based immunotherapy. Cell Research, 2017, 27, 74-95.	5.7	593
12	Efficient Presentation of Phagocytosed Cellular Fragments on the Major Histocompatibility Complex Class II Products of Dendritic Cells. Journal of Experimental Medicine, 1998, 188, 2163-2173.	4.2	583
13	Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor- viral RNA interactions. Journal of Clinical Investigation, 2005, 115, 3265-3275.	3.9	573
14	Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1814-1819.	3.3	506
15	A conserved dendritic-cell regulatory program limits antitumour immunity. Nature, 2020, 580, 257-262.	13.7	476
16	Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nature Medicine, 1998, 4, 1321-1324.	15.2	451
17	Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. Journal of Clinical Investigation, 1999, 104, 173-180.	3.9	409
18	Phenotypic properties of transmitted founder HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6626-6633.	3.3	379

#	Article	IF	Citations
19	A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell, 2020, 183, 347-362.e24.	13.5	349
20	Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20429-20434.	3.3	327
21	Plasmacytoid Dendritic Cells: Linking Innate and Adaptive Immunity. Journal of Virology, 2005, 79, 17-27.	1.5	322
22	Reversal of NK-Cell Exhaustion in Advanced Melanoma by Tim-3 Blockade. Cancer Immunology Research, 2014, 2, 410-422.	1.6	322
23	Combining radiotherapy and immunotherapy: A revived partnership. International Journal of Radiation Oncology Biology Physics, 2005, 63, 655-666.	0.4	320
24	Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood, 2004, 104, 2235-2246.	0.6	319
25	miR-30b/30d Regulation of GalNAc Transferases Enhances Invasion and Immunosuppression during Metastasis. Cancer Cell, 2011, 20, 104-118.	7.7	314
26	Activation of influenza virus–specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood, 2003, 101, 3520-3526.	0.6	311
27	Human Immunodeficiency Virus Type 1 Activates Plasmacytoid Dendritic Cells and Concomitantly Induces the Bystander Maturation of Myeloid Dendritic Cells. Journal of Virology, 2004, 78, 5223-5232.	1.5	305
28	CD8 Epitope Escape and Reversion in Acute HCV Infection. Journal of Experimental Medicine, 2004, 200, 1593-1604.	4.2	289
29	Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction. Cell, 2020, 183, 818-834.e13.	13.5	287
30	Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8947-8952.	3.3	275
31	Efficient Interaction of HIV-1 with Purified Dendritic Cells via Multiple Chemokine Coreceptors. Journal of Experimental Medicine, 1996, 184, 2433-2438.	4.2	250
32	Detection of Stromelysin and Collagenase in Synovial Fluid From Patients with Rheumatoid Arthritis and Posttraumatic Knee Injury. Arthritis and Rheumatism, 1992, 35, 35-42.	6.7	249
33	Re-Emergence of Dendritic Cell Vaccines for Cancer Treatment. Trends in Cancer, 2018, 4, 119-137.	3.8	247
34	Immunization of Malignant Melanoma Patients with Full-Length NY-ESO-1 Protein Using TLR7 Agonist Imiquimod as Vaccine Adjuvant. Journal of Immunology, 2008, 181, 776-784.	0.4	230
35	Primary Tumor Tissue Lysates Are Enriched in Heat Shock Proteins and Induce the Maturation of Human Dendritic Cells. Journal of Immunology, 2001, 167, 4844-4852.	0.4	224
36	EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nature Communications, 2018, 9, 3503.	5.8	224

#	Article	IF	CITATIONS
37	A Monocyte Conditioned Medium Is More Effective Than Defined Cytokines in Mediating the Terminal Maturation of Human Dendritic Cells. Blood, 1997, 90, 3640-3646.	0.6	222
38	Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. Journal of Experimental Medicine, 2005, 201, 891-902.	4.2	220
39	A recombinant vaccinia virus based ELISPOT assay detects high frequencies of Pol-specific CD8 T cells in HIV-1-positive individuals. Aids, 1999, 13, 767-777.	1.0	206
40	HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase–dependent mechanism. Journal of Clinical Investigation, 2008, 118, 3431-3439.	3.9	198
41	Topical TLR7 Agonist Imiquimod Can Induce Immune-Mediated Rejection of Skin Metastases in Patients with Breast Cancer. Clinical Cancer Research, 2012, 18, 6748-6757.	3.2	183
42	Dendritic cells resurrect antigens from dead cells. Trends in Immunology, 2001, 22, 141-148.	2.9	180
43	DCs and NK cells: critical effectors in the immune response to HIV-1. Nature Reviews Immunology, 2011, 11, 176-186.	10.6	177
44	A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine, 2002, 20, A8-A22.	1.7	175
45	Dendritic cell subsets and locations. International Review of Cell and Molecular Biology, 2019, 348, 1-68.	1.6	174
46	The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood, 2005, 106, 167-174.	0.6	172
47	Mature dendritic cells boost functionally superior CD8+ T-cell in humans without foreign helper epitopes. Journal of Clinical Investigation, 2000, 105, R9-R14.	3.9	172
48	The Human Vaccines Project: A roadmap for cancer vaccine development. Science Translational Medicine, 2016, 8, 334ps9.	5.8	162
49	Evidence of dysregulation of dendritic cells in primary HIV infection. Blood, 2010, 116, 3839-3852.	0.6	159
50	LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. Journal of Clinical Investigation, 2010, 120, 4415-4424.	3.9	157
51	Selective Loss of Innate CD4+ Vα24 Natural Killer T Cells in Human Immunodeficiency Virus Infection. Journal of Virology, 2002, 76, 7528-7534.	1.5	152
52	Toll-Like Receptor Agonists. Cancer Journal (Sudbury, Mass), 2010, 16, 382-391.	1.0	144
53	Aspirin Attenuates Platelet Activation and Immune Activation in HIV-1-Infected Subjects on Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2013, 63, 280-288.	0.9	132
54	Tethering and tickling. Journal of Cell Biology, 2001, 155, 501-504.	2.3	130

#	Article	IF	CITATIONS
55	Requirement of Mature Dendritic Cells for Efficient Activation of Influenza A-Specific Memory CD8+ T Cells. Journal of Immunology, 2000, 165, 1182-1190.	0.4	123
56	Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity. Cell Reports, 2018, 24, 1902-1915.e6.	2.9	114
57	Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy, 2010, 2, 37-56.	1.0	113
58	Therapeutic <i>In Situ</i> Autovaccination against Solid Cancers with Intratumoral Poly-ICLC: Case Report, Hypothesis, and Clinical Trial. Cancer Immunology Research, 2014, 2, 720-724.	1.6	112
59	Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood, 2003, 102, 4448-4455.	0.6	111
60	Danger signals: a time and space continuum. Trends in Molecular Medicine, 2004, 10, 251-257.	3.5	111
61	The apoptotic-cell receptor CR3, but not $\hat{l}\pm v\hat{l}^25$, is a regulator of human dendritic-cell immunostimulatory function. Blood, 2006, 108, 947-955.	0.6	111
62	Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nature Immunology, 2021, 22, 41-52.	7.0	110
63	Spatiotemporal trafficking of HIV in human plasmacytoid dendritic cells defines a persistently IFN-α–producing and partially matured phenotype. Journal of Clinical Investigation, 2011, 121, 1088-1101.	3.9	110
64	CD8+ T Cell Priming by Dendritic Cell Vaccines Requires Antigen Transfer to Endogenous Antigen Presenting Cells. PLoS ONE, 2010, 5, e11144.	1.1	110
65	Human Immunodeficiency Virus Type 1 Modified To Package Simian Immunodeficiency Virus Vpx Efficiently Infects Macrophages and Dendritic Cells. Journal of Virology, 2011, 85, 6263-6274.	1.5	108
66	The Distinctive Features of Influenza Virus Infection of Dendritic Cells. Immunobiology, 1998, 198, 552-567.	0.8	103
67	Dendritic cells as targets for therapy in rheumatoid arthritis. Nature Reviews Rheumatology, 2009, 5, 566-571.	3.5	103
68	Shared Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. Cell, 2020, 183, 1634-1649.e17.	13.5	103
69	Harnessing the immune system to treat cancer. Journal of Clinical Investigation, 2007, 117, 1130-1136.	3.9	103
70	Activation of HIV-1 specific CD4 and CD8 T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus. Aids, 2002, 16, 1319-1329.	1.0	102
71	Phase 2 Trial of Gemcitabine, Cisplatin, plus Ipilimumab in Patients with Metastatic Urothelial Cancer and Impact of DNA Damage Response Gene Mutations on Outcomes. European Urology, 2018, 73, 751-759.	0.9	99
72	Profiling SARS-CoV-2 HLA-I peptidome reveals TÂcell epitopes from out-of-frame ORFs. Cell, 2021, 184, 3962-3980.e17.	13.5	98

#	Article	IF	CITATIONS
73	Inhibition of both BRAF and MEK in BRAFV600E mutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on DC properties. Cancer Immunology, Immunotherapy, 2013, 62, 811-822.	2.0	97
74	Dendritic cell dysregulation during <scp>HIV</scp> â€1 infection. Immunological Reviews, 2013, 254, 170-189.	2.8	95
75	Therapeutic Immune Modulation against Solid Cancers with Intratumoral Poly-ICLC: A Pilot Trial. Clinical Cancer Research, 2018, 24, 4937-4948.	3.2	95
76	Fibroblast Growth Factor Receptor 3 Alterations and Response to PD-1/PD-L1 Blockade in Patients with Metastatic Urothelial Cancer. European Urology, 2019, 76, 599-603.	0.9	95
77	Efficiency of cross presentation of vaccinia virus-derived antigens by human dendritic cells. European Journal of Immunology, 2001, 31, 3432-3442.	1.6	92
78	Global Cancer Transcriptome Quantifies Repeat Element Polarization between Immunotherapy Responsive and T Cell Suppressive Classes. Cell Reports, 2018, 23, 512-521.	2.9	90
79	Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. Journal of Immunological Methods, 2001, 258, 111-126.	0.6	89
80	Towards superior dendritic-cell vaccines for cancer therapy. Nature Biomedical Engineering, 2018, 2, 341-346.	11.6	87
81	Computational Prediction and Validation of Tumor-Associated Neoantigens. Frontiers in Immunology, 2020, 11, 27.	2.2	86
82	Dominant effector memory characteristics, capacity for dynamic adaptive expansion, and sex bias in the innate $\hat{Vl}\pm24$ NKT cell compartment. European Journal of Immunology, 2003, 33, 588-596.	1.6	83
83	MAGE-A Inhibits Apoptosis in Proliferating Myeloma Cells through Repression of Bax and Maintenance of Survivin. Clinical Cancer Research, 2011, 17, 4309-4319.	3.2	83
84	CTLA-4 blockade increases antigen-specific CD8+ T cells in prevaccinated patients with melanoma: three cases. Cancer Immunology, Immunotherapy, 2011, 60, 1137-1146.	2.0	82
85	Resiquimod as an Immunologic Adjuvant for NY-ESO-1 Protein Vaccination in Patients with High-Risk Melanoma. Cancer Immunology Research, 2015, 3, 278-287.	1.6	81
86	Neutralizing Monoclonal Antibodies Block Human Immunodeficiency Virus Type 1 Infection of Dendritic Cells and Transmission to T Cells. Journal of Virology, 1998, 72, 9788-9794.	1.5	80
87	A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. Vaccine, 2009, 27, 6088-6094.	1.7	79
88	Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: a single-arm, open-label, phase 2 trial. The Lancet Gastroenterology and Hepatology, 2022, 7, 219-229.	3.7	79
89	Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell, 2022, 185, 1223-1239.e20.	13.5	79
90	Dendritic cells in progression and pathology of HIV infection. Trends in Immunology, 2014, 35, 114-122.	2.9	78

#	Article	IF	Citations
91	Processing and presentation of antigens by dendritic cells: implications for vaccines. Trends in Molecular Medicine, 2001, 7, 388-394.	3.5	76
92	Mature Dendritic Cells Infected with Canarypox Virus Elicit Strong Anti-Human Immunodeficiency Virus CD8+and CD4+ T-Cell Responses from Chronically Infected Individuals. Journal of Virology, 2001, 75, 2142-2153.	1.5	76
93	Reversal of natural killer cell exhaustion by TIM-3 blockade. Oncolmmunology, 2014, 3, e946365.	2.1	76
94	Dendritic-cell vaccines on the move. Nature, 2015, 519, 300-301.	13.7	75
95	Immunization of HIV-1-Infected Persons With Autologous Dendritic Cells Transfected With mRNA Encoding HIV-1 Gag and Nef. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 246-253.	0.9	72
96	<i>In situ</i> vaccination for the treatment of cancer. Immunotherapy, 2016, 8, 315-330.	1.0	71
97	Expression of the cancer/testis antigen NY-ESO-1 in primary and metastatic malignant melanoma (MM)correlation with prognostic factors. Cancer Immunity, 2007, 7 , 11 .	3.2	71
98	Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15154-15159.	3.3	69
99	Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials., 2016, 4, 15.		67
100	Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. Cancer Discovery, 2019, 9, 1192-1207.	7.7	65
101	Lack of Phenotypic and Functional Impairment in Dendritic Cells from Chimpanzees Chronically Infected with Hepatitis C Virus. Journal of Virology, 2004, 78, 6151-6161.	1.5	64
102	Recent Advances in Dendritic Cell Biology. Journal of Clinical Immunology, 2005, 25, 87-98.	2.0	64
103	Modulation of innate immunity in the tumor microenvironment. Cancer Immunology, Immunotherapy, 2016, 65, 1261-1268.	2.0	63
104	Phosphorylated 4E-BP1 Is Associated with Poor Survival in Melanoma. Clinical Cancer Research, 2009, 15, 2872-2878.	3.2	62
105	Mutation-derived Neoantigen-specific T-cell Responses in Multiple Myeloma. Clinical Cancer Research, 2020, 26, 450-464.	3.2	62
106	Variable cellular responses to SARS-CoV-2 in fully vaccinated patients with multiple myeloma. Cancer Cell, 2021, 39, 1442-1444.	7.7	62
107	Dendritic cells generated from blood monocytes of HIV-1 patients are not infected and act as competent antigen presenting cells eliciting potent T-cell responses. Immunology Letters, 1999, 66, 121-128.	1.1	61
108	Immune response in melanoma: an in-depth analysis of the primary tumor and corresponding sentinel lymph node. Modern Pathology, 2012, 25, 1000-1010.	2.9	61

#	Article	IF	Citations
109	Intraepidermal lymphocytes in psoriatic lesions are activated GMP-17(TIA-1)+CD8+CD3+ CTLs as determined by phenotypic analysis. Journal of Cutaneous Pathology, 1998, 25, 79-88.	0.7	60
110	Matrix Metalloproteinase-2 Conditions Human Dendritic Cells to Prime Inflammatory TH2 Cells via an IL-12- and OX40L-Dependent Pathway. Cancer Cell, 2011, 19, 333-346.	7.7	59
111	Plasmacytoid Dendritic Cells in HIV Infection. Advances in Experimental Medicine and Biology, 2012, 762, 71-107.	0.8	58
112	Activation of the noncanonical NF-κB pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14122-14127.	3.3	58
113	Flt3 ligand augments immune responses to anti-DEC-205-NY-ESO-1 vaccine through expansion of dendritic cell subsets. Nature Cancer, 2020, 1, 1204-1217.	5.7	58
114	Computational Pipeline for the PGV-001 Neoantigen Vaccine Trial. Frontiers in Immunology, 2017, 8, 1807.	2.2	57
115	Interactions between dead cells and dendritic cells in the induction of antiviral CTL responses. Current Opinion in Immunology, 2002, 14, 471-477.	2.4	56
116	Expansion of HIV-specific CD4+ and CD8+ T cells by dendritic cells transfected with mRNA encoding cytoplasm- or lysosome-targeted Nef. Blood, 2006, 107, 1963-1969.	0.6	56
117	Type 2 Bias of T Cells Expanded from the Blood of Melanoma Patients Switched to Type 1 by <i>IL-12p70 < /i>i>mRNA–Transfected Dendritic Cells. Cancer Research, 2008, 68, 9441-9450.</i>	0.4	56
118	Oligonucleotide Motifs That Disappear during the Evolution of Influenza Virus in Humans Increase Alpha Interferon Secretion by Plasmacytoid Dendritic Cells. Journal of Virology, 2011, 85, 3893-3904.	1.5	56
119	Poly-ICLC, a TLR3 Agonist, Induces Transient Innate Immune Responses in Patients With Treated HIV-Infection: A Randomized Double-Blinded Placebo Controlled Trial. Frontiers in Immunology, 2019, 10, 725.	2.2	54
120	Type I interferons promote cross-priming: more functions for old cytokines. Nature Immunology, 2003, 4, 939-941.	7.0	51
121	TLR4 Engagement during TLR3-Induced Proinflammatory Signaling in Dendritic Cells Promotes IL-10–Mediated Suppression of Antitumor Immunity. Cancer Research, 2011, 71, 5467-5476.	0.4	51
122	Dissection of Immune Gene Networks in Primary Melanoma Tumors Critical for Antitumor Surveillance of Patients with Stage Il–III Resectable Disease. Journal of Investigative Dermatology, 2014, 134, 2202-2211.	0.3	51
123	DC-virus interplay: a double edged sword. Seminars in Immunology, 2004, 16, 147-161.	2.7	50
124	Quantitative Effect of Suboptimal Codon Usage on Translational Efficiency of mRNA Encoding HIV-1 gag in Intact T Cells. PLoS ONE, 2008, 3, e2356.	1.1	50
125	Hematopoietic Progenitor Kinase 1 Is a Negative Regulator of Dendritic Cell Activation. Journal of Immunology, 2009, 182, 6187-6194.	0.4	48
126	Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation. JCl Insight, $2017, 2, .$	2.3	48

#	Article	IF	Citations
127	Combined Vaccination with NY-ESO-1 Protein, Poly-ICLC, and Montanide Improves Humoral and Cellular Immune Responses in Patients with High-Risk Melanoma. Cancer Immunology Research, 2020, 8, 70-80.	1.6	47
128	HIV-1 infection–induced apoptotic microparticles inhibit human DCs via CD44. Journal of Clinical Investigation, 2012, 122, 4685-4697.	3.9	47
129	Dendritic cell immunotherapy. Annals of the New York Academy of Sciences, 2013, 1284, 31-45.	1.8	45
130	Sequence-Specific Sensing of Nucleic Acids. Trends in Immunology, 2017, 38, 53-65.	2.9	45
131	Ion efflux and influenza infection trigger NLRP3 inflammasome signaling in human dendritic cells. Journal of Leukocyte Biology, 2016, 99, 723-734.	1.5	43
132	Turbocharging vaccines: emerging adjuvants for dendritic cell based therapeutic cancer vaccines. Current Opinion in Immunology, 2017, 47, 35-43.	2.4	43
133	HIV Type 1 Infection of Plasmacytoid and Myeloid Dendritic Cells Is Restricted by High Levels of SAMHD1 and Cannot be Counteracted by Vpx. AIDS Research and Human Retroviruses, 2014, 30, 195-203.	0.5	42
134	Myeloid Cell–associated Resistance to PD-1/PD-L1 Blockade in Urothelial Cancer Revealed Through Bulk and Single-cell RNA Sequencing. Clinical Cancer Research, 2021, 27, 4287-4300.	3.2	42
135	Current Melanoma Treatments: Where Do We Stand?. Cancers, 2021, 13, 221.	1.7	41
136	In Vitro Priming Recapitulates In Vivo HIV-1 Specific T Cell Responses, Revealing Rapid Loss of Virus Reactive CD4+ T Cells in Acute HIV-1 Infection. PLoS ONE, 2009, 4, e4256.	1.1	40
137	Amplification of low-frequency antiviral CD8 T cell responses using autologous dendritic cells. Aids, 2002, 16, 171-180.	1.0	39
138	Pathways utilized by dendritic cells for binding, uptake, processing and presentation of antigens derived from HIV-1. European Journal of Immunology, 2007, 37, 1752-1763.	1.6	39
139	Vaccines for immunoprevention of cancer. Journal of Clinical Investigation, 2021, 131, .	3.9	39
140	HIVâ€1 impairs <i>in vitro</i> priming of naÃ⁻ve T cells and gives rise to contactâ€dependent suppressor T cells. European Journal of Immunology, 2010, 40, 2248-2258.	1.6	38
141	Impact of MAPK Pathway Activation in BRAFV600 Melanoma on T Cell and Dendritic Cell Function. Frontiers in Immunology, 2013, 4, 346.	2.2	36
142	Landscape of natural killer cell activity in head and neck squamous cell carcinoma., 2020, 8, e001523.		36
143	CSF1R inhibition depletes tumor-associated macrophages and attenuates tumor progression in a mouse sonic Hedgehog-Medulloblastoma model. Oncogene, 2021, 40, 396-407.	2.6	35
144	Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients. Cancer Immunity, 2010, 10, 4.	3.2	35

#	Article	IF	Citations
145	A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles. Genome Medicine, 2020, 12, 24.	3.6	34
146	Resolution of immune activation defines nonpathogenic SIV infection. Journal of Clinical Investigation, 2009, 119, 3512-5.	3.9	34
147	Plasma Factors During Chronic HIV-1 Infection Impair IL-12 Secretion by Myeloid Dendritic Cells via a Virus-Independent Pathway. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 61, 535-544.	0.9	33
148	Activation of Toll-like Receptor-2 by Endogenous Matrix Metalloproteinase-2 Modulates Dendritic-Cell-Mediated Inflammatory Responses. Cell Reports, 2014, 9, 1856-1870.	2.9	33
149	Developing a multidisciplinary prospective melanoma biospecimen repository to advance translational research. American Journal of Translational Research (discontinued), 2009, 1, 35-43.	0.0	33
150	A whole-blood RNA transcript-based gene signature is associated with the development of CTLA-4 blockade-related diarrhea in patients with advanced melanoma treated with the checkpoint inhibitor tremelimumab., 2018, 6, 90.		32
151	KBMA Listeria monocytogenes is an effective vector for DC-mediated induction of antitumor immunity. Journal of Clinical Investigation, 2008, 118, 3990-4001.	3.9	32
152	Active immunization of humans with dendritic cells. , 2000, 20, 167-174.		31
153	P2X Antagonists Inhibit HIV-1 Productive Infection and Inflammatory Cytokines Interleukin-10 (IL-10) and IL- $1\hat{l}^2$ in a Human Tonsil Explant Model. Journal of Virology, 2019, 93, .	1.5	31
154	Lynch Syndrome and MSI-H Cancers: From Mechanisms to "Off-The-Shelf―Cancer Vaccines. Frontiers in Immunology, 2021, 12, 757804.	2.2	31
155	Clinical relevance of neutral endopeptidase (NEP/CD10) in melanoma. Journal of Translational Medicine, 2007, 5, 2.	1.8	29
156	Bacillus Calmette-Guerin (BCG): Its fight against pathogens and cancer. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 121-129.	0.8	29
157	Whole-blood RNA transcript-based models can predict clinical response in two large independent clinical studies of patients with advanced melanoma treated with the checkpoint inhibitor, tremelimumab., 2017, 5, 67.		28
158	Efficient in vitro expansion of JC virus-specific CD8+ T-cell responses by JCV peptide-stimulated dendritic cells from patients with progressive multifocal leukoencephalopathy. Virology, 2009, 383, 173-177.	1.1	27
159	CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells. PLoS Pathogens, 2016, 12, e1005553.	2.1	27
160	Lung Cancer and Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Identifying Important Knowledge Gaps for Investigation. Journal of Thoracic Oncology, 2022, 17, 214-227.	0.5	26
161	Safety and immunogenicity of an inactivated recombinant Newcastle disease virus vaccine expressing SARS-CoV-2 spike: Interim results of a randomised, placebo-controlled, phase 1 trial. EClinicalMedicine, 2022, 45, 101323.	3.2	26
162	Innate immune responses in primary HIV-1 infection. Current Opinion in HIV and AIDS, 2008, 3, 36-44.	1.5	25

#	Article	IF	CITATIONS
163	Requirement for Innate Immunity and CD90+ NK1.1â° Lymphocytes to Treat Established Melanoma with Chemo-Immunotherapy. Cancer Immunology Research, 2015, 3, 296-304.	1.6	25
164	Melanoma expression of matrix metalloproteinase-23 is associated with blunted tumor immunity and poor responses to immunotherapy. Journal of Translational Medicine, 2014, 12, 342.	1.8	24
165	MMP2 and TLRs modulate immune responses in the tumor microenvironment. JCI Insight, 2021, 6, .	2.3	24
166	A division of labor: DC subsets and HIV receptor diversity. Nature Immunology, 2002, 3, 891-893.	7.0	23
167	Differentiation of Peripheral Blood Monocytes into Dendritic Cells. Current Protocols in Immunology, 2005, 67, Unit 22F.4.	3.6	23
168	Dendritic Cell–Dead Cell Interactions: Implications and Relevance for Immunotherapy. Journal of Immunotherapy, 2001, 24, 294-304.	1.2	22
169	Dendritic Cell-Targeted Approaches to Modulate Immune Dysfunction in the Tumor Microenvironment. Frontiers in Immunology, 2013, 4, 436.	2.2	21
170	Phase II trial of gemcitabine + cisplatin + ipilimumab in patients with metastatic urothelial cancer Journal of Clinical Oncology, 2016, 34, 357-357.	0.8	21
171	Generation of autologous peptide- and protein-pulsed dendritic cells for patient-specific immunotherapy. Methods in Molecular Medicine, 2005, 109, 97-112.	0.8	21
172	Vaccination With a Recombinant Protein Encoding the Tumor-specific Antigen NY-ESO-1 Elicits an A2/157-165-specific CTL Repertoire Structurally Distinct and of Reduced Tumor Reactivity Than That Elicited by Spontaneous Immune Responses to NY-ESO-1-expressing Tumors. Journal of Immunotherapy, 2009, 32, 161-168.	1.2	20
173	Modulation of human Th17 cell responses through complement receptor 3 (CD11â€⁻b/CD18) ligation on monocyte-derived dendritic cells. Journal of Autoimmunity, 2018, 92, 57-66.	3.0	20
174	Exploiting dendritic cells for active immunotherapy of cancer and chronic infections. Molecular Biotechnology, 2007, 36, 131-141.	1.3	19
175	Vaccination with Recombinant NY-ESO-1 Protein Elicits Immunodominant HLA-DR52b-restricted CD4+ T Cell Responses with a Conserved T Cell Receptor Repertoire. Clinical Cancer Research, 2009, 15, 4467-4474.	3.2	19
176	Soluble CD40 ligand contributes to dendritic cell-mediated T-cell dysfunction in HIV-1 infection. Aids, 2015, 29, 1287-1296.	1.0	19
177	Maturation Matters: Importance of Maturation for Antitumor Immunity of Dendritic Cell Vaccines. Journal of Clinical Oncology, 2004, 22, 3834-3835.	0.8	18
178	HLA Class I–Associated Immunodominance Affects CTL Responsiveness to an ESO Recombinant Protein Tumor Antigen Vaccine. Clinical Cancer Research, 2009, 15, 299-306.	3.2	18
179	Stimulation of Human Anti-Viral CD8+ Cytolytic T Lymphocytes by Dendritic Cells. Advances in Experimental Medicine and Biology, 1995, 378, 375-379.	0.8	17
180	Immunotherapy for AIDS virus infections: Cautious optimism for cell-based vaccine. Nature Medicine, 2003, 9, 13-14.	15.2	16

#	Article	IF	CITATIONS
181	Preparation of Tumor Antigen-loaded Mature Dendritic Cells for Immunotherapy. Journal of Visualized Experiments, 2013, , .	0.2	16
182	PD-1 inhibition in advanced myeloproliferative neoplasms. Blood Advances, 2021, 5, 5086-5097.	2.5	16
183	Unexplored horizons of cDC1 in immunity and tolerance. Advances in Immunology, 2020, 148, 49-91.	1.1	15
184	A Phase II Randomized Study of CDX-1401, a Dendritic Cell Targeting NY-ESO-1 Vaccine, in Patients with Malignant Melanoma Pre-Treated with Recombinant CDX-301, a Recombinant Human Flt3 Ligand Journal of Clinical Oncology, 2016, 34, 9589-9589.	0.8	14
185	Dendritic Cells and the Promise of Therapeutic Vaccines for Human Immunodeficiency Virus (HIV)-1. Current HIV Research, 2003, 1, 205-216.	0.2	13
186	Immune phenotype of peripheral blood mononuclear cells in patients with high-risk non-muscle invasive bladder cancer. World Journal of Urology, 2018, 36, 1741-1748.	1.2	13
187	Cross-Presentation of Tumor Antigens Is Ruled by Synaptic Transfer of Vesicles among Dendritic Cell Subsets. Cancer Cell, 2020, 37, 751-753.	7.7	13
188	Attenuated <i>Listeria monocytogenes </i> /i>Vectors Overcome Suppressive Plasma Factors During HIV Infection to Stimulate Myeloid Dendritic Cells to Promote Adaptive Immunity and Reactivation of Latent Virus. AIDS Research and Human Retroviruses, 2015, 31, 127-136.	0.5	12
189	Dendritic Cell Vaccines. Methods in Molecular Biology, 2016, 1403, 763-777.	0.4	12
190	A T-cell-based immunogenicity protocol for evaluating human antigen-specific responses. STAR Protocols, 2021, 2, 100758.	0.5	12
191	Neoadjuvant clinical trials provide a window of opportunity for cancer drug discovery. Nature Medicine, 2022, 28, 626-629.	15.2	12
192	Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid–poly-l-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy. Vaccine, 2015, 33, 388-395.	1.7	11
193	Adjuvant NY-ESO-1 vaccine immunotherapy in high-risk resected melanoma: a retrospective cohort analysis., 2018, 6, 38.		11
194	A needle in the 'cancer vaccine' haystack. Nature Medicine, 2010, 16, 854-856.	15.2	10
195	Dendritic Cell Strategies for Eliciting Mutation-Derived Tumor Antigen Responses in Patients. Cancer Journal (Sudbury, Mass), 2017, 23, 131-137.	1.0	10
196	Super(antigen) target for SARS-CoV-2. Nature Reviews Immunology, 2021, 21, 72-72.	10.6	10
197	Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Science Translational Medicine, 2022, 14, .	5.8	10
198	Active systemic lupus erythematosus is associated with decreased blood conventional dendritic cells. Experimental and Molecular Pathology, 2013, 95, 121-123.	0.9	9

#	Article	IF	Citations
199	TIM-3 and TIGIT are possible immune checkpoint targets in patients with bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 403-406.	0.8	9
200	Dendritic Cells in Human Blood and Synovial Exudates. International Reviews of Immunology, 1990, 6, 103-116.	1.5	8
201	Clinical Trial Evidence of the Antitumor Activity of Topical Imiquimod for Breast Cancer Skin Metastases. Journal of Clinical Oncology, 2014, 32, 3204-3205.	0.8	8
202	Converting tumors into vaccine manufacturing factories: DC recruitment, activation and clinical responses with a flt3L-primed in situ vaccine for low-grade lymphoma [nct01976585]., 2014, 2, P45.		8
203	Differential Expression of Type I MAGE in New and Relapsed Multiple Myeloma: Evidence for Association with Proliferation and Progression of Disease Blood, 2006, 108, 3397-3397.	0.6	8
204	Against the self: dendritic cells versus cancer. Apmis, 2003, 111, 805-817.	0.9	7
205	Dysregulation of anti-tumor immunity by the matrix metalloproteinase-2. Oncolmmunology, 2012, 1, 109-111.	2.1	7
206	DNA damage response (DDR) gene mutations (mut), mut load, and sensitivity to chemotherapy plus immune checkpoint blockade in urothelial cancer (UC) Journal of Clinical Oncology, 2017, 35, 300-300.	0.8	7
207	Exploiting dendritic cells for active immunotherapy of cancer and chronic infection. Methods in Molecular Medicine, 2005, 109, 1-18.	0.8	7
208	Harnessing Natural Killer Cell Function for Genitourinary Cancers. Urologic Clinics of North America, 2020, 47, 433-442.	0.8	6
209	CT7 (MAGE-C1)-Specific Cellular Immune Responses in the Bone Marrow Microenvironment of Multiple Myeloma Patients Blood, 2005, 106, 356-356.	0.6	6
210	Mutation-Derived Tumor Antigens: Novel Targets in Cancer Immunotherapy. Oncology, 2015, 29, 970-2, 974-5.	0.4	6
211	Antigen depots: T cell traps?. Nature Medicine, 2013, 19, 397-398.	15.2	5
212	Advances in dendritic cell immunotherapies for HIV-1 infection. Expert Opinion on Biological Therapy, 2014, 14, 1545-1549.	1.4	5
213	Activation and Measurement of NLRP3 Inflammasome Activity Using IL-1β in Human Monocyte-derived Dendritic Cells. Journal of Visualized Experiments, 2014, , .	0.2	5
214	Dendritic Cells. , 2017, , 126-144.e6.		5
215	The effect of ipilimumab on natural killer cells identifies the subset of advanced melanoma patients with clinical response Journal of Clinical Oncology, 2015, 33, 9065-9065.	0.8	5
216	Biology of plasmacytoid dendritic cells and natural killer cells in HIV-1 infection. Current Opinion in HIV and AIDS, 2007, 2, 189-200.	1.5	4

#	Article	IF	CITATIONS
217	Armed and ready: How effector T cells deploy in reactive lymph nodes to modulate immunity. Nature Immunology, 2007, 8, 679-681.	7.0	4
218	Preclinical Development of a Cord Blood (CB)-Derived Hematopoietic Stem Cell (HSC) Product for Allogeneic Transplantation in Patients with Hematological Malignancies. Blood, 2016, 128, 818-818.	0.6	4
219	Phase II study of low-dose cyclophosphamide and ipilimumab in metastatic melanoma Journal of Clinical Oncology, 2014, 32, e20025-e20025.	0.8	4
220	Impact of gemcitabine + cisplatin + ipilimumab on circulating immune cells in patients (pts) with metastatic urothelial cancer (mUC) Journal of Clinical Oncology, 2015, 33, 4586-4586.	0.8	4
221	A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers Journal of Clinical Oncology, 2017, 35, TPS3114-TPS3114.	0.8	4
222	Exhausted T cell phenotypes depend on TCR signal strength. Nature Reviews Immunology, 2022, 22, 206-206.	10.6	4
223	Perspectives in Immunotherapy: meeting report from the Immunotherapy Bridge, December 1st–2nd, 2021. Journal of Translational Medicine, 2022, 20, .	1.8	4
224	Interactions of viruses with dendritic cells., 2001,, 505-522.		3
225	Tumor organoid-originated biomarkers predict immune response to PD-1 blockade. Cancer Cell, 2021, 39, 1187-1189.	7.7	3
226	Turning a Tumor into a Vaccine Factory: In Situ Vaccination for Low-Grade Lymphoma. Blood, 2014, 124, 5473-5473.	0.6	3
227	In situ, therapeutic vaccination against refractory solid cancers with intratumoral Poly-ICLC: A phase I study Journal of Clinical Oncology, 2016, 34, 3086-3086.	0.8	3
228	Phase 1/2 study of in situ vaccination with tremelimumab + intravenous (IV) durvalumab + poly-ICLC in patients with select relapsed, advanced cancers with measurable, biopsy-accessible tumors Journal of Clinical Oncology, 2017, 35, TPS3106-TPS3106.	0.8	3
229	A phase Ib study evaluating the safety and tolerability of durvalumab in combination with eribulin in patients with HER2-negative metastatic breast cancer and recurrent ovarian cancer Journal of Clinical Oncology, 2018, 36, TPS3116-TPS3116.	0.8	3
230	A phase II open labeled, randomized study of poly-ICLC matured dendritic cells for NY-ESO-1 and Mean-A peptide vaccination compared to Montanide, in melanoma patients in complete clinical remission Journal of Clinical Oncology, 2019, 37, 9538-9538.	0.8	3
231	Intratumoral checkpoint subversion as a strategy for minimizing adverse effects. Oncolmmunology, 2014, 3, e27580.	2.1	2
232	Dendritic cells and lymphoma cells: come together right now. Blood, 2015, 125, 5-7.	0.6	2
233	Plasmacytoid dendritic cells lead the charge against tumors. Journal of Clinical Investigation, 2012, 122, 481-484.	3.9	2
234	A phase I study of the safety and immunogenicity of a multi-peptide personalized genomic vaccine in the adjuvant treatment of solid tumors and hematological malignancies Journal of Clinical Oncology, 2019, 37, e14307-e14307.	0.8	2

#	Article	IF	CITATIONS
235	CTIM-17. PHASE I STUDY OF THE SAFETY AND IMMUNOGENICITY OF PERSONALIZED NEOANTIGEN VACCINES AND TUMOR TREATING FIELDS IN PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii36-ii36.	0.6	2
236	Abstract CT108: Immunogenicity of Poly-ICLC matured dendritic cells as an adjuvant for NY-ESO-1 and Melan-A-MART-1 peptide vaccination compared to Montanide® ISA-51 VG, in study subjects with melanoma in complete clinical remission but at high risk of disease recurrence. Cancer Research, 2022, 82, CT108-CT108.	0.4	2
237	Dendritic cell chic. Seminars in Immunopathology, 2005, 26, 215-219.	4.0	1
238	A Bloody Mess: Dendritic Cells Use Hemophagocytosis to Regulate Viral Inflammation. Immunity, 2013, 39, 429-431.	6.6	1
239	Influenza, but not HIVâ€specific CTL epitopes, elicits delayedâ€type hypersensitivity (DTH) reactions in HIVâ€infected patients. European Journal of Immunology, 2013, 43, 1545-1554.	1.6	1
240	Uncloaking Breast Tumor Neoantigens with Radiation. Trends in Immunology, 2021, 42, 277-279.	2.9	1
241	Host Immune Responses Against CT Antigens in Multiple Myeloma Patients Blood, 2006, 108, 3492-3492.	0.6	1
242	Treatment of solid tumors with intratumoral poly-ICLC: A phase II clinical study Journal of Clinical Oncology, 2014, 32, e14010-e14010.	0.8	1
243	Phase I/II study of the TLR3 agonist poly-ICLC as an adjuvant for NY-ESO-1 protein vaccination with or without Montanide ISA-51 vg in patients with melanoma Journal of Clinical Oncology, 2014, 32, TPS9119-TPS9119.	0.8	1
244	Association of melanoma expression of matrix metalloproteinase-23 with blunted tumor immunity and poor responses to immunotherapy Journal of Clinical Oncology, 2015, 33, e20057-e20057.	0.8	1
245	Retrospective cohort analysis of adjuvant NY-ESO-1 vaccines in stage III melanoma Journal of Clinical Oncology, 2016, 34, 3084-3084.	0.8	1
246	Killed but Metabolically Active Recombinant Listeria monocytogenes as an Antigen Delivery and Activation Platform for Human Dendritic Cell-Based Cancer Immunotherapy Blood, 2004, 104, 3447-3447.	0.6	1
247	Dendritic Cells. , 2013, , 117-133.e6.		1
248	Phase I/II study of resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with melanoma Journal of Clinical Oncology, 2014, 32, 9086-9086.	0.8	1
249	$314 \hat{a} \in$ NKG2A and HLA-E define a novel alternative immune checkpoint axis in bladder cancer. , 2021, 9, A338-A338.		1
250	Dendritic cell function in HIV infection. HIV Therapy, 2009, 3, 527-537.	0.6	0
251	Immune Regulation. , 0, , 33-44.		0
252	Activation of Toll-like receptor-2 by tumor associated matrix metalloproteinase-2 modulates dendritic cell function. , $2014, 2, .$		0

#	Article	IF	CITATIONS
253	Melanoma progression is associated with NK cell exhaustion. , 2014, 2, O6.		0
254	改良ãŒé€²ã,€æ"¹çжç″°èfžãf¯ã,¯ãfãf³. Nature Digest, 2015, 12, 30-32.	0.0	0
255	ATIM-31. PHASE I STUDY OF TUMOR TREATMENT FIELDS AND A PERSONALIZED MUTATION-DERIVED TUMOR VACCINE IN PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi8-vi8.	0.6	O
256	Dendritic Cell Biology., 2018,, 247-260.e6.		0
257	Martin A. "Mac―Cheever, MD: In Memoriam (1944–2021). Cancer Immunology Research, 2021, 9, 1244.	1.6	O
258	Dead-cell-associated proteins are an important source of antigens for cross-presentation by dendritic cells. Nature Reviews Immunology, 2004, 4, 656-656.	10.6	0
259	Matrix metalloproteinase-23 as a new immunotherapeutic checkpoint target in melanoma Journal of Clinical Oncology, 2014, 32, 3030-3030.	0.8	O
260	Association of natural killer (NK) cell exhaustion with melanoma progression Journal of Clinical Oncology, 2014, 32, 9099-9099.	0.8	0
261	Poly-ICLC as an adjuvant for NY-ESO-1 protein vaccination with or without Montanide ISA-51 VG in patients with melanoma Journal of Clinical Oncology, 2015, 33, e14034-e14034.	0.8	O
262	<i>In situ</i> vaccine for low-grade lymphoma: Combination of intratumoral Flt3L and poly-ICLC with low-Dose radiotherapy Journal of Clinical Oncology, 2015, 33, TPS3105-TPS3105.	0.8	0
263	Patient-Specific Mutation-Derived Tumor Antigens As Targets for Cancer Immunotherapy in Multiple Myeloma. Blood, 2015, 126, 1851-1851.	0.6	0
264	Natural pattern-recognition-receptor agonists in prophylactic vaccines for in situ vaccination of lymphoma Journal of Clinical Oncology, 2016, 34, e14516-e14516.	0.8	0
265	Correlation of consistent blood-based gene expression with change in CTLA4 in two large independent clinical studies of patients with advanced melanoma treated with tremelimumab Journal of Clinical Oncology, 2017, 35, 6-6.	0.8	O
266	Trials in progress: A phase II study of in situ therapeutic vaccination against refractory solid cancers with intratumoral poly-ICLC Journal of Clinical Oncology, 2017, 35, 166-166.	0.8	0
267	Widespread Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. SSRN Electronic Journal, 0, , .	0.4	O
268	Dendritic Cell Vaccines. , 2007, , 251-274.		0
269	621â€NKG2A and HLA-E define a novel mechanism of resistance to immunotherapy with M. bovis BCG in non-muscle-invasive bladder cancer patients. , 2021, 9, A651-A651.		O
270	772â€MHC-I skewing in mutant calreticulin-positive myeloproliferative neoplasms is countered by heteroclitic peptide cancer vaccination. , 2021, 9, A807-A807.		0

#	Article	lF	CITATIONS
271	Abstract P046: NKG2A and HLA-E define a novel alternative immune checkpoint axis in bladder cancer. , 2022, , .		O
272	EPCO-22. IDENTIFYING NEOANTIGENS FOR A PERSONALIZED MUTATION-DERIVED GENOMIC VACCINE IN PATIENTS WITH NEWLY DIAGNOSED GLIOBLASTOMA. Neuro-Oncology, 2020, 22, ii73-ii74.	0.6	0
273	444â€MHC-I skewing in mutant calreticulin-positive myeloproliferative neoplasms is countered by heteroclitic peptide cancer vaccination. , 2020, , .		O
274	Abstract 1379: Discovery of tumor-associated, immunogenic peptides presented in a patient-derived, mutant calreticulin-driven myeloproliferative neoplasm cell line. Cancer Research, 2022, 82, 1379-1379.	0.4	0