
Idoia Ochoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8074014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	JIND: joint integration and discrimination for automated single-cell annotation. Bioinformatics, 2022, 38, 2488-2495.	4.1	3
2	SimiC enables the inference of complex gene regulatory dynamics across cell phenotypes. Communications Biology, 2022, 5, 351.	4.4	3
3	Unsupervised ensemble learning for genome sequencing. Pattern Recognition, 2022, 129, 108721.	8.1	1
4	DZip: improved general-purpose loss less compression based on novel neural network modeling. , 2021,		14
5	Moss enables high sensitivity single-nucleotide variant calling from multiple bulk DNA tumor samples. Nature Communications, 2021, 12, 2204.	12.8	1
6	RENANO: a REference-based compressor for NANOpore FASTQ files. Bioinformatics, 2021, 37, 4862-4864.	4.1	9
7	mspack: efficient lossless and lossy mass spectrometry data compression. Bioinformatics, 2021, 37, 3923-3925.	4.1	3
8	VEF: a variant filtering tool based on ensemble methods. Bioinformatics, 2020, 36, 2328-2336.	4.1	4
9	GABAC: an arithmetic coding solution for genomic data. Bioinformatics, 2020, 36, 2275-2277.	4.1	6
10	DZip: Improved General-Purpose Lossless Compression Based on Novel Neural Network Modeling. , 2020, , .		2
11	ENANO: Encoder for NANOpore FASTQ files. Bioinformatics, 2020, 36, 4506-4507.	4.1	14
12	GPress: a framework for querying general feature format (GFF) files and expression files in a compressed form. Bioinformatics, 2020, 36, 4810-4812.	4.1	1
13	CROMqs: An infinitesimal successive refinement lossy compressor for the quality scores. Journal of Bioinformatics and Computational Biology, 2020, 18, 2050031.	0.8	0
14	MassComp, a lossless compressor for mass spectrometry data. BMC Bioinformatics, 2019, 20, 368.	2.6	8
15	DeepZip: Lossless Data Compression Using Recurrent Neural Networks. , 2019, , .		33
16	AliCo: A New Efficient Representation for SAM Files. , 2019, , .		2
17	Compression of Nanopore FASTQ Files. Lecture Notes in Computer Science, 2019, , 36-47.	1.3	2
18	Genomic Data Compression. Annual Review of Biomedical Data Science, 2019, 2, 19-37.	6.5	38

Ιdoia Ochoa

#	Article	IF	CITATIONS
19	Denoising of Aligned Genomic Data. Scientific Reports, 2019, 9, 15067.	3.3	7
20	SPRING: a next-generation compressor for FASTQ data. Bioinformatics, 2019, 35, 2674-2676.	4.1	49
21	FaStore: a space-saving solution for raw sequencing data. Bioinformatics, 2018, 34, 2748-2756.	4.1	30
22	METHCOMP: a special purpose compression platform for DNA methylation data. Bioinformatics, 2018, 34, 2654-2656.	4.1	4
23	Effect of lossy compression of quality scores on variant calling. Briefings in Bioinformatics, 2017, 18, bbw011.	6.5	50
24	GeneComp, a New Reference-Based Compressor for SAM Files. , 2017, 2017, 330-339.		5
25	A Cluster-Based Approach to Compression of Quality Scores. , 2016, 2016, 261-270.		11
26	Denoising of Quality Scores for Boosted Inference and Reduced Storage. , 2016, 2016, 251-260.		2
27	CROMqs: an infinitesimal successive refinement lossy compressor for the quality scores. , 2016, 2016, 121-125.		1
28	GTRAC: fast retrieval from compressed collections of genomic variants. Bioinformatics, 2016, 32, i479-i486.	4.1	13
29	Comment on: â€~ERGC: an efficient referential genome compression algorithm'. Bioinformatics, 2016, 32, 1115-1117.	4.1	3
30	QVZ: lossy compression of quality values. Bioinformatics, 2015, 31, 3122-3129.	4.1	53
31	iDoComp: a compression scheme for assembled genomes. Bioinformatics, 2015, 31, 626-633.	4.1	40
32	Aligned genomic data compression via improved modeling. Journal of Bioinformatics and Computational Biology, 2014, 12, 1442002.	0.8	12
33	Compression Schemes for Similarity Queries. , 2014, , .		2
34	CaMoDi: a new method for cancer module discovery. BMC Genomics, 2014, 15, S8.	2.8	16
35	QualComp: a new lossy compressor for quality scores based on rate distortion theory. BMC Bioinformatics, 2013, 14, 187.	2.6	47
36	Efficient similarity queries via lossy compression. , 2013, , .		1

3

Ιdoia Ochoa

#	Article	IF	CITATIONS
37	Reference based genome compression. , 2012, , .		12
38	Turbo joint source-channel coding of non-uniform memoryless sources in the bandwidth-limited regime. IEEE Communications Letters, 2010, 14, 336-338.	4.1	1
39	LDPC Codes for Non-Uniform Memoryless Sources and Unequal Energy Allocation. IEEE Communications Letters, 2010, 14, 794-796.	4.1	7
40	Joint Turbo Coding and Source-Controlled Modulation of Cycle-Stationary Sources in the Bandwidth-Limited Regime. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, , 618-625.	0.3	0