Christopher W Wheat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8073250/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution, 2015, 30, 78-87.	8.7	469
2	The butterfly plant arms-race escalated by gene and genome duplications. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8362-8366.	7.1	458
3	The genetic basis of a plant–insect coevolutionary key innovation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20427-20431.	7.1	325
4	Bioinformatic processing of RADâ€seq data dramatically impacts downstream population genetic inference. Methods in Ecology and Evolution, 2017, 8, 907-917.	5.2	253
5	Timing and Patterns in the Taxonomic Diversification of Lepidoptera (Butterflies and Moths). PLoS ONE, 2013, 8, e80875.	2.5	197
6	The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Communications, 2014, 5, 4737.	12.8	196
7	Genetics of dispersal. Biological Reviews, 2018, 93, 574-599.	10.4	182
8	Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nature Communications, 2018, 9, 1005.	12.8	137
9	Population genomics of the critically endangered kÄkÄpÅ. Cell Genomics, 2021, 1, 100002.	6.5	106
10	INTEGRATING EVOLUTIONARY AND FUNCTIONAL APPROACHES TO INFER ADAPTATION AT SPECIFIC LOCI. Evolution; International Journal of Organic Evolution, 2010, 64, 2489-2509.	2.3	103
11	Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by <scp>RNA</scp> â€< scp>Seq. Molecular Ecology, 2013, 22, 4884-4895.	3.9	101
12	Embracing Colonizations: A New Paradigm for Species Association Dynamics. Trends in Ecology and Evolution, 2018, 33, 4-14.	8.7	94
13	Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nature Communications, 2019, 10, 4455.	12.8	82
14	Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics, 2012, 13, 361.	2.8	79
15	Phylogenomic Insights into the Cambrian Explosion, the Colonization of Land and the Evolution of Flight in Arthropoda. Systematic Biology, 2013, 62, 93-109.	5.6	75
16	Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Molecular Ecology, 2018, 27, 3613-3626.	3.9	67
17	Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Science Advances, 2019, 5, eaau3648.	10.3	66
18	Energy and lipid metabolism during direct and diapause development in a pierid butterfly. Journal of Experimental Biology, 2016, 219, 3049-3060.	1.7	64

CHRISTOPHER W WHEAT

#	Article	IF	CITATIONS
19	Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zoologica Scripta, 2014, 43, 641-650.	1.7	61
20	A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys, 2020, 938, 97-124.	1.1	61
21	The molecular genetic basis of herbivory between butterflies and their host plants. Nature Ecology and Evolution, 2018, 2, 1418-1427.	7.8	56
22	A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana. GigaScience, 2017, 6, 1-7.	6.4	55
23	Timing of diapause termination in relation to variation in winter climate. Physiological Entomology, 2017, 42, 232-238.	1.5	53
24	Local adaptation of photoperiodic plasticity maintains life cycle variation within latitudes in a butterfly. Ecology, 2019, 100, e02550.	3.2	46
25	A transposable element insertion is associated with anÂalternative life history strategy. Nature Communications, 2019, 10, 5757.	12.8	41
26	Genomic insights into the conservation status of the world's last remaining Sumatran rhinoceros populations. Nature Communications, 2021, 12, 2393.	12.8	39
27	A mitochondrial-DNA-based phylogeny for some evolutionary-genetic model species of Colias butterflies (Lepidoptera, Pieridae). Molecular Phylogenetics and Evolution, 2008, 47, 893-902.	2.7	37
28	Structural complexity and molecular heterogeneity of a butterfly ejaculate reflect a complex history of selection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5406-E5413.	7.1	37
29	<i>Drosophila</i> Evolution over Space and Time (DEST): A New Population Genomics Resource. Molecular Biology and Evolution, 2021, 38, 5782-5805.	8.9	37
30	Evolutionary history of host use, rather than plant phylogeny, determines gene expression in a generalist butterfly. BMC Evolutionary Biology, 2016, 16, 59.	3.2	36
31	Unifying host-associated diversification processes using butterfly–plant networks. Nature Communications, 2018, 9, 5155.	12.8	35
32	Sexâ€linked inheritance of diapause induction in the butterfly <i><scp>P</scp>ieris napi</i> . Physiological Entomology, 2017, 42, 257-265.	1.5	33
33	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	12.8	33
34	Colour lightness of butterfly assemblages across North America and Europe. Scientific Reports, 2019, 9, 1760.	3.3	32
35	Phosphoglucose isomerase (Pgi) performance and fitness effects among Arthropods and its potential role as an adaptive marker in conservation genetics. Conservation Genetics, 2010, 11, 387-397.	1.5	30
36	Investigating the genomic basis of discrete phenotypes using a Poolâ€Seqâ€only approach: New insights into the genetics underlying colour variation in diverse taxa. Molecular Ecology, 2017, 26, 4990-5002.	3.9	27

CHRISTOPHER W WHEAT

#	Article	IF	CITATIONS
37	Metabolome dynamics of diapause in the butterfly <i>Pieris napi</i> : distinguishing maintenance, termination and post-diapause phases. Journal of Experimental Biology, 2018, 221, .	1.7	25
38	X-tox: An atypical defensin derived family of immune-related proteins specific to Lepidoptera. Developmental and Comparative Immunology, 2008, 32, 575-584.	2.3	24
39	Critiquing blind dating: the dangers of over-confident date estimates in comparative genomics. Trends in Ecology and Evolution, 2013, 28, 636-642.	8.7	24
40	PCR primers for 30 novel gene regions in the nuclear genomes of Lepidoptera. ZooKeys, 2016, 596, 129-141.	1.1	24
41	Exploring a Poolâ€seqâ€only approach for gaining population genomic insights in nonmodel species. Ecology and Evolution, 2019, 9, 11448-11463.	1.9	23
42	A genetic switch for male UV iridescence in an incipient species pair of sulphur butterflies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
43	Diapause: Circadian Clock Genes Are at It Again. Current Biology, 2019, 29, R1245-R1246.	3.9	20
44	The Genome Assembly and Annotation of the Apollo Butterfly <i>Parnassius apollo</i> , a Flagship Species for Conservation Biology. Genome Biology and Evolution, 2021, 13, .	2.5	19
45	Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nature Communications, 2022, 13, 755.	12.8	18
46	Microevolutionary dynamics of a macroevolutionary key innovation in a Lepidopteran herbivore. BMC Evolutionary Biology, 2010, 10, 60.	3.2	17
47	Museomics of a rare taxon: placing Whalleyanidae in the Lepidoptera Tree of Life. Systematic Entomology, 2021, 46, 926-937.	3.9	17
48	Butterfly dichromatism primarily evolved via Darwin's, not Wallace's, model. Evolution Letters, 2020, 4, 545-555.	3.3	16
49	The unresolved phylogenomic tree of butterflies and moths (Lepidoptera): Assessing the potential causes and consequences. Systematic Entomology, 2022, 47, 531-550.	3.9	14
50	Changes in gene expression during female reproductive development in a color polymorphic insect. Evolution; International Journal of Organic Evolution, 2020, 74, 1063-1081.	2.3	13
51	Morphology does not covary with predicted behavioral correlations of the domestication syndrome in dogs. Evolution Letters, 2020, 4, 189-199.	3.3	13
52	Pgi: the ongoing saga of a candidate gene. Current Opinion in Insect Science, 2014, 4, 42-47.	4.4	12
53	High-Quality Genome Assembly and Comprehensive Transcriptome of the Painted Lady Butterfly <i>Vanessa cardui</i> . Genome Biology and Evolution, 2021, 13, .	2.5	10
54	Female fecundity variation affects reproducibility of experiments on host plant preference and acceptance in a phytophagous insect. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162643.	2.6	9

CHRISTOPHER W WHEAT

#	Article	IF	CITATIONS
55	Microevolutionary selection dynamics acting on immune genes of the greenâ€veined white butterfly, <i>Pieris napi</i> . Molecular Ecology, 2018, 27, 2807-2822.	3.9	9
56	From Inquilines to Gall Inducers: Genomic Signature of a Life-Style Transition in <i>Synergus</i> Gall Wasps. Genome Biology and Evolution, 2020, 12, 2060-2073.	2.5	9
57	Chromosome Level Assembly of the Comma Butterfly (Polygonia c-album). Genome Biology and Evolution, 2021, 13, .	2.5	8
58	Local adaptation of life cycles in a butterfly is associated with variation in several circadian clock genes. Molecular Ecology, 2022, 31, 1461-1475.	3.9	8
59	The Genome of the Margined White Butterfly (<i>Pieris macdunnoughii</i>): Sex Chromosome Insights and the Power of Polishing with PoolSeq Data. Genome Biology and Evolution, 2021, 13, .	2.5	7
60	Transcriptome sequencing reveals high isoform diversity in the ant <i>Formica exsecta</i> . PeerJ, 2017, 5, e3998.	2.0	7
61	Extensive transcriptomic profiling of pupal diapause in a butterfly reveals a dynamic phenotype. Molecular Ecology, 2022, 31, 1269-1280.	3.9	7
62	Physiological differences between female limited, alternative life history strategies: The Alba phenotype in the butterfly Colias croceus. Journal of Insect Physiology, 2018, 107, 257-264.	2.0	6
63	Differential Expression of Immune Genes between Two Closely Related Beetle Species with Different Immunocompetence following Attack by Asecodes parviclava. Genome Biology and Evolution, 2020, 12, 522-534.	2.5	6
64	A Population Genomic Investigation of Immune Cell Diversity and Phagocytic Capacity in a Butterfly. Genes, 2021, 12, 279.	2.4	5
65	Planned cull endangers Swedish wolf population. Science, 2022, 377, 162-162.	12.6	5
66	Physiological Tradeoffs of Immune Response Differs by Infection Type in Pieris napi. Frontiers in Physiology, 2020, 11, 576797.	2.8	4
67	A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy. Nature Communications, 2022, 13, 1233.	12.8	3