
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8072678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oceanic turbulence from a planktonic perspective. Limnology and Oceanography, 2022, 67, 348-363.	3.1	16
2	Larval crossâ€ s hore transport estimated from internal waves with a background flow: The effects of larval vertical position and depth regulation. Limnology and Oceanography, 2021, 66, 678-693.	3.1	7
3	The California Undercurrent as a Source of Upwelled Waters in a Coastal Filament. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016602.	2.6	8

A Pseudo‣agrangian Transformation to Study a Chlorophyllâ€a Patch in the RÃa de Vigo (NW Iberian) Tj ETQq0 0.0 rgBT /Overlock 10

5	Timing is everything: Drivers of interannual variability in blue whale migration. Scientific Reports, 2020, 10, 7710.	3.3	49
6	Semi―and fully supervised quantification techniques to improve population estimates from machine classifiers. Limnology and Oceanography: Methods, 2020, 18, 739-753.	2.0	20
7	Comparing Vertical Distributions of Chl-a Fluorescence, Marine Snow, and Taxon-Specific Zooplankton in Relation to Density Using High-Resolution Optical Measurements. Frontiers in Marine Science, 2020, 7, .	2.5	14
8	The Scripps Plankton Camera system: A framework and platform for in situ microscopy. Limnology and Oceanography: Methods, 2020, 18, 681-695.	2.0	51
9	An ultraviolet dyegraph for measuring the chemical disturbances of sinking particles and swimming plankton. Limnology and Oceanography: Methods, 2020, 18, 707-716.	2.0	0
10	Environmental drivers of population variability in colonyâ€forming marine diatoms. Limnology and Oceanography, 2020, 65, 2515-2528.	3.1	21
11	Stokes drift of plankton in linear internal waves: Crossâ€shore transport of neutrally buoyant and depthâ€keeping organisms. Limnology and Oceanography, 2020, 65, 1286-1296.	3.1	10
12	A novel crossâ€ s hore transport mechanism revealed by subsurface, robotic larval mimics: Internal wave deformation of the background velocity field. Limnology and Oceanography, 2020, 65, 1456-1470.	3.1	13
13	A view of physical mechanisms for transporting harmful algal blooms to Massachusetts Bay. Marine Pollution Bulletin, 2020, 154, 111048.	5.0	8
14	Deformation of ambient chemical gradients by sinking spheres. Journal of Fluid Mechanics, 2020, 892, .	3.4	6
15	The importance of environment and life stage on interpretation of silky shark relative abundance indices for the equatorial Pacific Ocean. Fisheries Oceanography, 2019, 28, 43-53.	1.7	8
16	Frontogenesis and the Creation of Fineâ€Scale Vertical Phytoplankton Structure. Journal of Geophysical Research: Oceans, 2019, 124, 1509-1523.	2.6	14
17	Recent Advances in Modelling of Harmful Algal Blooms. Ecological Studies, 2018, , 359-377.	1.2	17
18	The role of submesoscale currents in structuring marine ecosystems. Nature Communications, 2018, 9, 4758.	12.8	234

#	Article	IF	CITATIONS
19	When Mixed Layers Are Not Mixed. Stormâ€Driven Mixing and Bioâ€optical Vertical Gradients in Mixed Layers of the Southern Ocean. Journal of Geophysical Research: Oceans, 2018, 123, 7264-7289.	2.6	47
20	Eddy properties in the Southern California Current System. Ocean Dynamics, 2018, 68, 761-777.	2.2	20
21	A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics. Nature Communications, 2017, 8, 14189.	12.8	137
22	Recovering growth and grazing rates from nonlinear dilution experiments. Limnology and Oceanography, 2017, 62, 1825-1835.	3.1	10
23	Crossing the line: Tunas actively exploit submesoscale fronts to enhance foraging success. Limnology and Oceanography Letters, 2017, 2, 187-194.	3.9	28
24	Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography, 2016, 29, .	1.0	434
25	Biogeochemical properties of eddies in the California Current System. Geophysical Research Letters, 2016, 43, 5812-5820.	4.0	22
26	A pseudo-Lagrangian method for remapping ocean biogeochemical tracer data: Calculation of net Chl-a growth rates. Journal of Geophysical Research: Oceans, 2015, 120, 4962-4979.	2.6	10
27	Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. Journal of Geophysical Research: Oceans, 2015, 120, 4654-4669.	2.6	64
28	Plankton dynamics in a cyclonic eddy in the <scp>S</scp> outhern <scp>C</scp> alifornia <scp>C</scp> urrent <scp>S</scp> ystem. Journal of Geophysical Research: Oceans, 2015, 120, 5566-5588.	2.6	30
29	Smoothed estimation of unknown inputs and states in dynamic systems with application to oceanic flow field reconstruction. International Journal of Adaptive Control and Signal Processing, 2015, 29, 1224-1242.	4.1	7
30	Has Sverdrup's critical depth hypothesis been tested? Mixed layers vs. turbulent layers. ICES Journal of Marine Science, 2015, 72, 1897-1907.	2.5	83
31	A hierarchy of conceptual models of red-tide generation: Nutrition, behavior, and biological interactions. Harmful Algae, 2015, 47, 97-115.	4.8	120
32	Inhibition of growth rate and swimming speed of the harmful dinoflagellate Cochlodinium polykrikoides by diatoms: Implications for red tide formation. Harmful Algae, 2014, 37, 53-61.	4.8	40
33	Ecological Transitions in a Coastal Upwelling Ecosystem. Oceanography, 2013, 26, 210-219.	1.0	38
34	Episodic vertical nutrient fluxes and nearshore phytoplankton blooms in Southern California. Limnology and Oceanography, 2012, 57, 1673-1688.	3.1	34
35	Estimating size-dependent growth and grazing rates and their associated errors using the dilution method. Limnology and Oceanography: Methods, 2012, 10, 868-881.	2.0	4
36	Bringing physics to life at the submesoscale. Geophysical Research Letters, 2012, 39, .	4.0	327

#	Article	IF	CITATIONS
37	Enhanced nitrate fluxes and biological processes at a frontal zone in the southern California current system. Journal of Plankton Research, 2012, 34, 790-801.	1.8	59
38	Reassessment of copepod grazing impact based on continuous time series of in vivo gut fluorescence from individual copepods. Journal of Plankton Research, 2012, 34, 55-71.	1.8	9
39	The green ribbon: Multiscale physical control of phytoplankton productivity and community structure over a narrow continental shelf. Limnology and Oceanography, 2011, 56, 611-626.	3.1	58
40	Physical and biological controls of vertical gradients in phytoplankton. Limnology & Oceanography Fluids & Environments, 2011, 1, 75-90.	1.7	31
41	Physical and biological processes underlying the sudden surface appearance of a red tide in the nearshore. Limnology and Oceanography, 2011, 56, 787-801.	3.1	56
42	Horizontal internalâ€ŧide fluxes support elevated phytoplankton productivity over the inner continental shelf. Limnology & Oceanography Fluids & Environments, 2011, 1, 56-74.	1.7	63
43	Estimation of In Situ 3-D Particle Distributions From a Stereo Laser Imaging Profiler. IEEE Journal of Oceanic Engineering, 2011, 36, 586-601.	3.8	0
44	Cryptic peaks: invisible vertical structure in fluorescent particles revealed using a planar laser imaging fluorometer. Limnology and Oceanography, 2010, 55, 1943-1958.	3.1	29
45	An Autonomous Open-Ocean Stereoscopic PIV Profiler. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1362-1380.	1.3	18
46	Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems. Journal of Geophysical Research, 2010, 115, .	3.3	71
47	Size-structured planktonic ecosystems: constraints, controls and assembly instructions. Journal of Plankton Research, 2010, 32, 1121-1130.	1.8	77
48	Planktonic ecosystem models: perplexing parameterizations and a failure to fail. Journal of Plankton Research, 2009, 31, 1299-1306.	1.8	88
49	Skill assessment via cross-validation and Monte Carlo simulation: An application to Georges Bank plankton models. Journal of Marine Systems, 2009, 76, 134-150.	2.1	4
50	Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophysical Research Letters, 2009, 36, .	4.0	111
51	Copepod feeding quantified by planar laser imaging of gut fluorescence. Limnology and Oceanography: Methods, 2009, 7, 33-41.	2.0	12
52	Influence of bubbles and sand on chlorophyll-afluorescence measurements in the surfzone. Limnology and Oceanography: Methods, 2009, 7, 354-362.	2.0	6
53	BACTERIAâ€INDUCED MOTILITY REDUCTION IN <i>LINGULODINIUM POLYEDRUM</i> (DINOPHYCEAE) ¹ . Journal of Phycology, 2008, 44, 923-928.	2.3	27
54	Vertical distributions of Japanese sardine (Sardinops melanostictus) eggs: comparison of observations and a wind-forced Lagrangian mixing model. Fisheries Oceanography, 2008, 17, 89-100.	1.7	10

#	Article	IF	CITATIONS
55	Microscale variability in the distributions of large fluorescent particles observed in situ with a planar laser imaging fluorometer. Journal of Marine Systems, 2008, 69, 254-270.	2.1	33
56	North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophysical Research Letters, 2008, 35, .	4.0	882
57	Thin layers of plankton: Formation by shear and death by diffusion. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 277-295.	1.4	55
58	AUE: An Autonomous Float for Monitoring the Upper Water Column. , 2007, , .		3
59	The impact of Scotian Shelf Water "cross-over―on the plankton dynamics on Georges Bank: A 3-D experiment for the 1999 spring bloom. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 2684-2707.	1.4	19
60	Spring phytoplankton bloom and associated lower trophic level food web dynamics on Georges Bank: 1-D and 2-D model studies. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 2656-2683.	1.4	19
61	Swimming Against the Flow: A Mechanism of Zooplankton Aggregation. Science, 2005, 308, 860-862.	12.6	213
62	TEMPORAL PATTERNS IN POPULATION GENETIC DIVERSITY OF PROROCENTRUM MICANS (DINOPHYCEAE)1. Journal of Phycology, 2004, 40, 239-247.	2.3	34
63	Influence of diurnal heating on stratification and residual circulation of Georges Bank. Journal of Geophysical Research, 2003, 108, .	3.3	20
64	Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	135
65	Model study of the cross-frontal water exchange on Georges Bank: A three-dimensional Lagrangian experiment. Journal of Geophysical Research, 2003, 108, .	3.3	15
66	NPZ Models of Plankton Dynamics: Their Construction, Coupling to Physics, and Application. Journal of Oceanography, 2002, 58, 379-387.	1.7	223
67	A 3-D prognostic numerical model study of the Georges Bank ecosystem. Part I: physical model. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 419-456.	1.4	46
68	A 3-D prognostic numerical model study of the Georges bank ecosystem. Part II: biological–physical model. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 457-482.	1.4	63
69	Turbulence avoidance: An alternate explanation of turbulence-enhanced ingestion rates in the field. Limnology and Oceanography, 2001, 46, 959-963.	3.1	47
70	Reply to Buckley et al.Â's "Comment: Larval Atlantic cod and haddock growth models, metabolism, ingestion, and temperature effects". Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57, 1961-1963.	1.4	1
71	Influence of variability in larval development on recruitment success in the euphausiid Euphausia pacifica  : elasticity and sensitivity analyses. Marine Biology, 1999, 133, 283-291.	1.5	11
72	Larval Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) growth on Georges Bank: a model with temperature, prey size, and turbulence forcing. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 25-36.	1.4	32

#	Article	IF	CITATIONS
73	Simultaneous Imaging of Phytoplankton and Zooplankton Distributions. Oceanography, 1998, 11, 24-29.	1.0	40
74	Models of harmful algal blooms. Limnology and Oceanography, 1997, 42, 1273-1282.	3.1	103
75	Spatial patterns in dense algal blooms. Limnology and Oceanography, 1997, 42, 1297-1305.	3.1	113
76	New models for the exploration of biological processes at fronts. ICES Journal of Marine Science, 1997, 54, 161-167.	2.5	13
77	Phytoplankton patches at fronts: A model of formation and response to wind events. Journal of Marine Research, 1997, 55, 1-29.	0.3	107
78	Plankton production in tidal fronts: A model of Georges Bank in summer. Journal of Marine Research, 1996, 54, 631-651.	0.3	116
79	Thin layers of phytoplankton: a model of formation by near-inertial wave shear. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 75-91.	1.4	98
80	Alongshore transport of a toxic phytoplankton bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Maine. Marine Biology, 1992, 112, 153-164.	1.5	139
81	Toxic phytoplankton blooms in the southwestern Gulf of Maine: testing hypotheses of physical control using historical data. Marine Biology, 1992, 112, 165-174.	1.5	64
82	Behavior of a simple plankton model with food-level acclimation by herbivores. Marine Biology, 1986, 91, 121-129.	1.5	190
83	Monthly to decadal variability of mesoscale stirring in the California Current System: Links To Upwelling, Climate Forcing, And Chlorophyll Transport Journal of Geophysical Research: Oceans, 0, ,	2.6	2
84	Benchmarking and Automating the Image Recognition Capability of an In Situ Plankton Imaging System. Frontiers in Marine Science, 0, 9, .	2.5	6