Mickey G Huson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8071586/publications.pdf

Version: 2024-02-01

50	2,222	23	45
papers	citations	h-index	g-index
51	51	51	2420
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 2005, 437, 999-1002.	27.8	496
2	Environmentally Sustainable Fibers from Regenerated Protein. Biomacromolecules, 2009, 10, 1-8.	5.4	215
3	A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials, 2010, 31, 8323-8331.	11.4	162
4	The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant. Biomaterials, 2009, 30, 2059-2065.	11.4	113
5	Design and facile production of recombinant resilin-like polypeptides: gene construction and a rapid protein purification method. Protein Engineering, Design and Selection, 2007, 20, 25-32.	2.1	92
6	Honeybee silk: Recombinant protein production, assembly and fiber spinning. Biomaterials, 2010, 31, 2695-2700.	11.4	78
7	Comparisons of Recombinant Resilin-like Proteins: Repetitive Domains Are Sufficient to Confer Resilin-like Properties. Biomacromolecules, 2009, 10, 3009-3014.	5.4	73
8	Characterization of a Protein-based Adhesive Elastomer Secreted by the Australian FrogNotadenbennetti. Biomacromolecules, 2005, 6, 3300-3312.	5.4	70
9	Effect of surface functionality of PAN-based carbon fibres on the mechanical performance of carbon/epoxy composites. Composites Science and Technology, 2014, 94, 89-95.	7.8	68
10	Molecular and functional characterisation of resilin across three insect orders. Insect Biochemistry and Molecular Biology, 2011, 41, 881-890.	2.7	56
11	New insights into the nature of the wool fibre surface. Journal of Structural Biology, 2008, 163, 127-136.	2.8	54
12	Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk. PLoS ONE, 2011, 6, e16489.	2.5	52
13	Proteinaceous adhesive secretions from insects, and in particular the egg attachment glue of <i>Opodiphthera</i> sp. moths. Archives of Insect Biochemistry and Physiology, 2008, 69, 85-105.	1.5	49
14	Transcrystallinity in polypropylene. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 3571-3580.	0.8	46
15	Fifty years later: The sequence, structure and function of lacewing cross-beta silk. Journal of Structural Biology, 2009, 168, 467-475.	2.8	40
16	Material Properties of Lipid Microdomains: Force-Volume Imaging Study of the Effect of Cholesterol on Lipid Microdomain Rigidity. Biophysical Journal, 2010, 99, 834-844.	0.5	39
17	The effect of transcrystallinity on the behavior of fibers in polymer matrices. Journal of Polymer Science, Polymer Physics Edition, 1985, 23, 121-128.	1.0	38
18	Controlled Amine Functionalization and Hydrophilicity of a Poly(lactic acid) Fabric. Plasma Processes and Polymers, 2009, 6, 490-497.	3.0	36

#	Article	IF	Citations
19	Interphase study of thermoplastic modified epoxy matrix composites: Phase behaviour around a single fibre influenced by heating rate and surface treatment. Composites Part A: Applied Science and Manufacturing, 2010, 41, 787-794.	7.6	28
20	Internal Structure of Mature and Immature Cotton Fibers Revealed by Scanning Probe Microscopy. Textile Reseach Journal, 2003, 73, 1005-1012.	2.2	27
21	Controlling the Molecular Structure and Physical Properties of Artificial Honeybee Silk by Heating or by Immersion in Solvents. PLoS ONE, 2012, 7, e52308.	2.5	27
22	Ageing effect of plasmaâ€treated wool. Journal of the Textile Institute, 2011, 102, 1086-1093.	1.9	24
23	Rational design of new materials using recombinant structural proteins: Current state and future challenges. Journal of Structural Biology, 2018, 201, 76-83.	2.8	24
24	Effects of Thermal Denaturation on the Solid-State Structure and Molecular Mobility of Glycinin. Biomacromolecules, 2011, 12, 2092-2102.	5.4	23
25	Imaging Wool Fiber Surfaces with a Scanning Force Microscope. Textile Reseach Journal, 1995, 65, 445-453.	2.2	22
26	Convergently-evolved structural anomalies in the coiled coil domains of insect silk proteins. Journal of Structural Biology, 2014, 186, 402-411.	2.8	22
27	A nucleation theory for the anomalous freezing point depression of solvents in swollen rubber gels. Journal of Polymer Science, Part B: Polymer Physics, 1988, 26, 2413-2431.	2.1	21
28	The measurement of resilience with a scanning probe microscope. Polymer Testing, 2006, 25, 2-11.	4.8	21
29	DSC investigation of the physical ageing and deageing of wool. Polymer International, 1991, 26, 157-161.	3.1	20
30	Structural Characterization and Properties of Lyocell Fibers After Fibrillation and Enzymatic Defibrillation Finishing Treatments. Textile Reseach Journal, 2003, 73, 1024-1030.	2.2	20
31	Continuous Production of Flexible Fibers from Transgenically Produced Honeybee Silk Proteins. Macromolecular Bioscience, 2013, 13, 1321-1326.	4.1	19
32	The Mechanism by Which Oxidizing Agents Minimize Strength Losses in Wool Dyeing. Textile Reseach Journal, 1992, 62, 9-14.	2,2	18
33	Effects of Aqueous Exposure on the Mechanical Properties of Wool Fibers—Analysis by Atomic Force Microscopy. Textile Reseach Journal, 2001, 71, 573-581.	2.2	17
34	Use of dynamic mechanical analysis in comparing vulcanization of different phases in NR/BR and IR/BR blends. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 143-148.	0.4	16
35	Pulsed Plasma Polymerization of Hexamethyldisiloxane onto Wool: Control of Moisture Vapor Transmission Rate and Surface Adhesion. Plasma Processes and Polymers, 2009, 6, 139-147.	3.0	16
36	Semi- and fully interpenetrating polymer networks based on polyurethane-polyacrylate systems. IX. Properties of an isomerically related interpenetrating network. Journal of Applied Polymer Science, 1986, 31, 709-716.	2.6	13

#	Article	IF	CITATIONS
37	Physical Properties of Wool Fibers in Electrolyte Solutions. Textile Reseach Journal, 1998, 68, 595-605.	2.2	11
38	Using the scanning probe microscope to measure the effect of relative humidity on sample stiffness. Review of Scientific Instruments, 2002, 73, 3520-3524.	1.3	10
39	Semi- and fully interpenetrating polymer networks based on polyurethane–polyacrylate systems. XI. The influence of polymerization temperature on morphology and properties. Journal of Applied Polymer Science, 1992, 45, 1753-1762.	2.6	9
40	Recombinant Structural Proteins and Their Use in Future Materials. Sub-Cellular Biochemistry, 2017, 82, 491-526.	2.4	9
41	Semi- and fully-interpenetrating polymer networks based on polyurethane–polyacrylate systems. XII. The influence of polymerization pressure on morphology and properties. Journal of Applied Polymer Science, 1992, 46, 973-979.	2.6	7
42	Analysis of the Effects of Atmospheric Helium Plasma Treatment on the Surface Structure of Jute Fibres and Resulting Composite Properties. Journal of Adhesion Science and Technology, 2009, 23, 2109-2120.	2.6	7
43	Semi- and fully interpenetrating polymer networks based on polyurethane-polyacrylate systems. X. Polyurethane-poly(ethyl acrylate) interpenetrating polymer networks. Journal of Applied Polymer Science, 1986, 32, 3881-3888.	2.6	6
44	Nucleation of polypropylene by cyclic oligomers present in poly(ethylene terephthalate). Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 3549-3553.	0.8	2
45	A contribution to the theory of accelerated sulphur vulcanization of natural rubber and polybutadiene BR with tetramethyl thiuram disulphide and bis(2-benzothiazolyl) disulphide. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 2833-2839.	0.8	2
46	Recombinant Resilin—A Protein-Based Elastomer. , 2008, , 255-276.		1
47	Cohesive Setting of Wool in Air: Effect of Mechanical De-ageing. Textile Reseach Journal, 1993, 63, 204-210.	2.2	O
48	Influencia del proceso de fibrilación y desfibrilación enzimática en las propiedades mecánicas de hilos de fibras celulósicas regeneradas obtenidas por el proceso NMMO. Revista De Metalurgia, 2001, 37, 348-351.	0.5	0
49	Recombinant Resilin—A Protein-Based Elastomer. , 2008, , .		0
50	Recombinant Resilin. , 0, , 6929-6940.		0