Lea M Delbridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8071213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac mechanical efficiency is preserved in primary cardiac hypertrophy despite impaired mechanical function. Journal of General Physiology, 2021, 153, .	1.9	2
2	Altered cardiac structure and function is related to seizure frequency in a rat model of chronic acquired temporal lobe epilepsy. Neurobiology of Disease, 2021, 159, 105505.	4.4	7
3	HFpEF—Time to Explore the Role of Genetic Heterogeneity in Phenotypic Variability. Circulation, 2019, 140, 1607-1609.	1.6	6
4	Myocardial Energy Stress, Autophagy Induction, and Cardiomyocyte Functional Responses. Antioxidants and Redox Signaling, 2019, 31, 472-486.	5.4	19
5	Cardiomyocyte transcription is controlled by combined mineralocorticoid receptor and circadian clock signalling. Journal of Endocrinology, 2019, 241, 17-29.	2.6	12
6	NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nature Communications, 2018, 9, 1373.	12.8	77
7	Experimental and Human Evidence for Lipocalinâ€⊋ (Neutrophil Gelatinaseâ€Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and Heart Failure. Journal of the American Heart Association, 2017, 6, .	3.7	59
8	High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Science Translational Medicine, 2017, 9, .	12.4	43
9	Mdivi-1 Protects Human W8B2 ⁺ Cardiac Stem Cells from Oxidative Stress and Simulated Ischemia-Reperfusion Injury. Stem Cells and Development, 2017, 26, 1771-1780.	2.1	23
10	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
11	Ca <scp>MKII</scp> <i>î´</i> and cardiomyocyte Ca ²⁺ signalling new perspectives on splice variant targeting. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 1327-1332.	1.9	6
12	Myocardial glycogen dynamics: New perspectives on disease mechanisms. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 415-425.	1.9	28
13	Ca ²⁺ /calmodulin dependent kinaseÂ <scp>II</scp> : A critical mediator in determining reperfusion outcomes in the heart?. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 940-946.	1.9	9
14	Myocardial insulin resistance, metabolic stress and autophagy in diabetes. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 56-61.	1.9	28
15	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
16	Cardiac ischaemic stress: Cardiomyocyte Ca2+, sex and sex steroids. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 717-723.	1.9	19
17	Reactive oxygen species and insulinâ€resistant cardiomyopathy. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 222-228.	1.9	44
18	Angiotensin II Type 2 Receptor Antagonizes Angiotensin II Type 1 Receptor–Mediated Cardiomyocyte Autophagy. Hypertension, 2009, 53, 1032-1040.	2.7	100

#	Article	IF	CITATIONS
19	EARLY ORIGINS OF CARDIAC HYPERTROPHY: DOES CARDIOMYOCYTE ATTRITION PROGRAMME FOR PATHOLOGICAL †CATCHâ€UP' GROWTH OF THE HEART?. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 1358-1364.	1.9	53
20	CARDIAC HYPERTROPHY, SUBSTRATE UTILIZATION AND METABOLIC REMODELLING: CAUSE OR EFFECT?. Clinical and Experimental Pharmacology and Physiology, 2006, 33, 159-166.	1.9	49
21	Angiotensin II–Mediated Phenotypic Cardiomyocyte Remodeling Leads to Age-Dependent Cardiac Dysfunction and Failure. Hypertension, 2005, 46, 426-432.	2.7	87