Michael C Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8069056/publications.pdf

Version: 2024-02-01

218677 276875 3,860 41 26 citations h-index papers

41 g-index 43 43 43 5112 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. Journal of Allergy and Clinical Immunology, 2022, 149, 488-516.e9.	2.9	24
2	Location of eosinophils in the airway wall is critical for specific features of airway hyperresponsiveness and T2 inflammation in asthma. European Respiratory Journal, 2022, 60, 2101865.	6.7	18
3	Mucus Plugs Persist in Asthma, and Changes in Mucus Plugs Associate with Changes in Airflow over Time. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1036-1045.	5.6	39
4	Obesity alters pathology and treatment response in inflammatory disease. Nature, 2022, 604, 337-342.	27.8	93
5	Novel Potential Treatable Traits in Asthma: Where is the research taking us?. , 2022, , .		O
6	Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 841-852.	5.6	14
7	The association of plasma IL-6 with measures of asthma morbidity in a moderate-severe pediatric cohort aged 6-18 years. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2916-2919.e2.	3.8	11
8	PrecISE: Precision Medicine in Severe Asthma: An adaptive platform trial with biomarker ascertainment. Journal of Allergy and Clinical Immunology, 2021, 147, 1594-1601.	2.9	27
9	Update in Adult Asthma 2020. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 395-402.	5.6	8
10	Use of Fractional Exhaled Nitric Oxide to Guide the Treatment of Asthma: An Official American Thoracic Society Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2021, 204, e97-e109.	5.6	69
11	Investigation of the relationship between IL-6 and type 2 biomarkers in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 430-433.	2.9	38
12	Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes. Diabetes Care, 2020, 43, 5-12.	8.6	220
13	Reply to Nannini and to Lipworth et al American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1325-1326.	5.6	O
14	The precision interventions for severe and/or exacerbation-prone asthma (PrecISE) adaptive platform trial: statistical considerations. Journal of Biopharmaceutical Statistics, 2020, 30, 1026-1037.	0.8	11
15	Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 973-982.	5.6	105
16	An antiâ€siglecâ€8 antibody depletes sputum eosinophils from asthmatic subjects and inhibits lung mast cells. Clinical and Experimental Allergy, 2020, 50, 904-914.	2.9	24
17	Intersection of biology and therapeutics: type 2 targeted therapeutics for adult asthma. Lancet, The, 2020, 395, 371-383.	13.7	102
18	Diagnosis and Management of T2-High Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 442-450.	3.8	51

#	Article	IF	Citations
19	COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 83-90.	5.6	370
20	Multiview Cluster Analysis Identifies Variable Corticosteroid Response Phenotypes in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1358-1367.	5.6	91
21	Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1076-1085.	5. 6	165
22	Unmet Needs in Severe Asthma Subtyping and Precision Medicine Trials. Bridging Clinical and Patient Perspectives. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 823-829.	5 . 6	31
23	A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 465-477.	5.6	98
24	Refractory airway type 2 inflammation in a large subgroup of asthmatic patients treated with inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2019, 143, 104-113.e14.	2.9	135
25	Airway epithelium–shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling. Journal of Clinical Investigation, 2019, 129, 4979-4991.	8.2	57
26	Internet-Based Monitoring in the Severe Asthma Research Program Identifies a Subgroup of Patients With Labile Asthma Control. Chest, 2018, 153, 378-386.	0.8	6
27	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	3.8	210
28	Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. Journal of Clinical Investigation, 2018, 128, 997-1009.	8.2	337
29	Natural killer cell–mediated inflammation resolution is disabled in severe asthma. Science Immunology, 2017, 2, .	11.9	76
30	Inflammatory and Comorbid Features of Patients with Severe Asthma and Frequent Exacerbations. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 302-313.	5.6	346
31	ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight, 2017, 2, .	5.0	29
32	IL1RL1 asthma risk variants regulate airway type 2 inflammation. JCI Insight, 2016, 1, e87871.	5.0	42
33	Biomarkers of Airway Type-2 Inflammation and Integrating Complex Phenotypes to Endotypes in Asthma. Current Allergy and Asthma Reports, 2016, 16, 71.	5.3	12
34	Metabolic consequences of obesity as an "outside in―mechanism of disease severity in asthma. European Respiratory Journal, 2016, 48, 291-293.	6.7	25
35	Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8765-8770.	7.1	139
36	Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respiratory Medicine, the, 2016, 4, 574-584.	10.7	375

#	Article	IF	CITATIONS
37	Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. Journal of Allergy and Clinical Immunology, 2014, 133, 388-394.e5.	2.9	282
38	Intelectin-1 Is a Prominent Protein Constituent of Pathologic Mucus Associated with Eosinophilic Airway Inflammation in Asthma. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1005-1007.	5 . 6	35
39	Type 2 Immune Responses in Obese Individuals with Asthma. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 633-634.	5.6	15
40	New-onset asthma among soldiers serving in Iraq and Afghanistan. Allergy and Asthma Proceedings, 2010, 31, 67-71.	2.2	86
41	Hyperresponsiveness on Washout of Volatile Anesthetics from Isolated Spinal Cord Compared to Withdrawal from Ethanol. Anesthesia and Analgesia, 2005, 100, 413-436.	2.2	6