Terence S Dermody

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8068811/publications.pdf Version: 2024-02-01

TEPENCE S DEPMODY

#	Article	IF	CITATIONS
1	Chikungunya Virus Vaccine Candidate Incorporating Synergistic Mutations Is Attenuated and Protects Against Virulent Virus Challenge. Journal of Infectious Diseases, 2023, 227, 457-465.	1.9	5
2	The Murine Neuronal Receptor NgR1 Is Dispensable for Reovirus Pathogenesis. Journal of Virology, 2022, 96, e0005522.	1.5	2
3	Reovirus infection is regulated by NPC1 and endosomal cholesterol homeostasis. PLoS Pathogens, 2022, 18, e1010322.	2.1	11
4	The Pittsburgh Study: Learning with Communities About Child Health and Thriving. Health Equity, 2022, 6, 338-344.	0.8	0
5	Vaccine Safety, Efficacy, and Trust Take Time. Annual Review of Virology, 2021, 8, iii-iv.	3.0	13
6	The Decision To Publish Gutierrez-Alvarez et al., "Middle East Respiratory Syndrome Coronavirus Gene 5 Modulates Pathogenesis in Mice― Journal of Virology, 2021, 95, .	1.5	0
7	Electron Tomography to Study the Three-dimensional Structure of the Reovirus Egress Pathway in Mammalian Cells. Bio-protocol, 2021, 11, e4080.	0.2	1
8	A Single Point Mutation, Asn16→Lys, Dictates the Temperature-Sensitivity of the Reovirus tsG453 Mutant. Viruses, 2021, 13, 289.	1.5	2
9	Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
10	What Is the Price of Science?. MBio, 2021, 12, .	1.8	2
11	Reovirus directly engages integrin to recruit clathrin for entry into host cells. Nature Communications, 2021, 12, 2149.	5.8	28
12	Ins and Outs of Reovirus: Vesicular Trafficking in Viral Entry and Egress. Trends in Microbiology, 2021, 29, 363-375.	3.5	28
13	Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host and Microbe, 2021, 29, 1014-1029.e8.	5.1	35
14	The multi-functional reovirus $If3$ protein is a virulence factor that suppresses stress granule formation and is associated with myocardial injury. PLoS Pathogens, 2021, 17, e1009494.	2.1	16
15	Reovirus Nonstructural Protein I_f NS Recruits Viral RNA to Replication Organelles. MBio, 2021, 12, e0140821.	1.8	11
16	Recurring Revolutions in Virology. Annual Review of Virology, 2021, 8, v-vii.	3.0	1
17	Some viruses need to phaseâ€separate to replicate. EMBO Journal, 2021, 40, e109558.	3.5	1
18	Altered Glycan Expression on Breast Cancer Cells Facilitates Infection by T3 Seroptype Oncolytic Reovirus. Nano Letters, 2021, 21, 9720-9728.	4.5	3

#	Article	IF	CITATIONS
19	THRIVE Conceptual Framework and Study Protocol: A Community-Partnered Longitudinal Multi-Cohort Study to Promote Child and Youth Thriving, Health Equity, and Community Strength. Frontiers in Pediatrics, 2021, 9, 797526.	0.9	5
20	Chikungunya Virus Strains from Each Genetic Clade Bind Sulfated Glycosaminoglycans as Attachment Factors. Journal of Virology, 2020, 94, .	1.5	21
21	Cytidine Monophosphate <i>N</i> -Acetylneuraminic Acid Synthetase and Solute Carrier Family 35 Member A1 Are Required for Reovirus Binding and Infection. Journal of Virology, 2020, 95, .	1.5	11
22	Reovirus σ1 Conformational Flexibility Modulates the Efficiency of Host Cell Attachment. Journal of Virology, 2020, 94, .	1.5	9
23	Reovirus uses macropinocytosis-mediated entry and fast axonal transport to infect neurons. PLoS Pathogens, 2020, 16, e1008380.	2.1	28
24	Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing. MBio, 2020, 11, .	1.8	7
25	A New Coronavirus Emerges, This Time Causing a Pandemic. Annual Review of Virology, 2020, 7, iii-v.	3.0	13
26	A modified lysosomal organelle mediates nonlytic egress of reovirus. Journal of Cell Biology, 2020, 219, .	2.3	27
27	Chikungunya virus replication in skeletal muscle cells is required for disease development. Journal of Clinical Investigation, 2020, 130, 1466-1478.	3.9	32
28	Confocal Microscopy of Reovirus Transport in Living Dorsal Root Ganglion Neurons. Bio-protocol, 2020, 10, e3825.	0.2	0
29	A New Coronavirus Emerges, This Time Causing a Pandemic. Annual Review of Virology, 2020, 7, iii-v.	3.0	1
30	Disruption of Type III Interferon (IFN) Genes <i>Ifnl2</i> and <i>Ifnl3</i> Recapitulates Loss of the Type III IFN Receptor in the Mucosal Antiviral Response. Journal of Virology, 2019, 93, .	1.5	35
31	Glycan-mediated enhancement of reovirus receptor binding. Nature Communications, 2019, 10, 4460.	5.8	46
32	Expanding the Pipeline for Pediatric Physician-Scientists. Journal of Pediatrics, 2019, 207, 3-7.e1.	0.9	7
33	Endogenous double-stranded Alu RNA elements stimulate IFN-responses in relapsing remitting multiple sclerosis. Journal of Autoimmunity, 2019, 100, 40-51.	3.0	25
34	Function, Architecture, and Biogenesis of Reovirus Replication Neoorganelles. Viruses, 2019, 11, 288.	1.5	30
35	Reovirus-Induced Apoptosis in the Intestine Limits Establishment of Enteric Infection. Journal of Virology, 2018, 92, .	1.5	28
36	Age-dependent susceptibility to reovirus encephalitis in mice is influenced by maturation of the type-l interferon response. Pediatric Research, 2018, 83, 1057-1066.	1.1	17

#	Article	IF	CITATIONS
37	Structural and Functional Features of the Reovirus ${}^\circ\!\!\!\!if1$ Tail. Journal of Virology, 2018, 92, .	1.5	26
38	The TRiC chaperonin controls reovirus replication through outer-capsid folding. Nature Microbiology, 2018, 3, 481-493.	5.9	47
39	A viral trigger for celiac disease. PLoS Pathogens, 2018, 14, e1007181.	2.1	21
40	<i>Reductio ad Intellectum</i> . Annual Review of Virology, 2018, 5, ii-iv.	3.0	0
41	Murine Norovirus Infection Induces TH1 Inflammatory Responses to Dietary Antigens. Cell Host and Microbe, 2018, 24, 677-688.e5.	5.1	67
42	Reovirus Neurotropism and Virulence Are Dictated by Sequences in the Head Domain of the Viral Attachment Protein. Journal of Virology, 2018, 92, .	1.5	17
43	Reovirus Nonstructural Protein ÏfNS Acts as an RNA Stability Factor Promoting Viral Genome Replication. Journal of Virology, 2018, 92, .	1.5	17
44	Murine cytomegalovirus M72 promotes acute virus replication in vivo and is a substrate of the TRiC/CCT complex. Virology, 2018, 522, 92-105.	1.1	9
45	Reovirus ÏfNS and μNS Proteins Remodel the Endoplasmic Reticulum to Build Replication Neo-Organelles. MBio, 2018, 9, .	1.8	51
46	An Orchestra of Reovirus Receptors: Still Searching for the Conductor. Advances in Virus Research, 2018, 100, 223-246.	0.9	6
47	Expression of <i>Ifnlr1</i> on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus. Journal of Virology, 2017, 91, .	1.5	131
48	Microbial Vertical Transmission during Human Pregnancy. Cell Host and Microbe, 2017, 21, 561-567.	5.1	280
49	Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science, 2017, 356, 44-50.	6.0	367
50	African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions. Journal of Virology, 2017, 91, .	1.5	39
51	Structural Insights into Reovirus σ1 Interactions with Two Neutralizing Antibodies. Journal of Virology, 2017, 91, .	1.5	30
52	Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. Journal of Clinical Investigation, 2017, 127, 737-749.	3.9	260
53	A workshop on leadership for senior MD–PhD students. Medical Education Online, 2016, 21, 31534.	1.1	7
54	Pathogenic Chikungunya Virus Evades B Cell Responses to Establish Persistence. Cell Reports, 2016, 16, 1326-1338.	2.9	62

#	Article	IF	CITATIONS
55	Mutagenesis of <i>S</i> -Adenosyl- <scp>l</scp> -Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity. Journal of Virology, 2016, 90, 7248-7256.	1.5	55
56	Engineering Recombinant Reoviruses To Display gp41 Membrane-Proximal External-Region Epitopes from HIV-1. MSphere, 2016, 1, .	1.3	5
57	Antagonism of the Sodium-Potassium ATPase Impairs Chikungunya Virus Infection. MBio, 2016, 7, .	1.8	55
58	Validity of the Medical College Admission Test for predicting MD–PhD student outcomes. Advances in Health Sciences Education, 2016, 21, 33-49.	1.7	15
59	Comparison of three neurotropic viruses reveals differences in viral dissemination to the central nervous system. Virology, 2016, 487, 1-10.	1.1	30
60	Glycan Engagement Dictates Hydrocephalus Induction by Serotype 1 Reovirus. MBio, 2015, 6, e02356.	1.8	23
61	Genetics in Virology Research. Annual Review of Virology, 2015, 2, vii-x.	3.0	0
62	Serotonin Receptor Agonist 5-Nonyloxytryptamine Alters the Kinetics of Reovirus Cell Entry. Journal of Virology, 2015, 89, 8701-8712.	1.5	29
63	Diminished Reovirus Capsid Stability Alters Disease Pathogenesis and Littermate Transmission. PLoS Pathogens, 2015, 11, e1004693.	2.1	12
64	lsolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host and Microbe, 2015, 18, 86-95.	5.1	116
65	Structure of Serotype 1 Reovirus Attachment Protein ${}^{ }f1$ in Complex with Junctional Adhesion Molecule A Reveals a Conserved Serotype-Independent Binding Epitope. Journal of Virology, 2015, 89, 6136-6140.	1.5	21
66	Dual-Use Research of Concern (DURC) Review at American Society for Microbiology Journals. MBio, 2015, 6, e01236.	1.8	19
67	Endothelial JAM-A Promotes Reovirus Viremia and Bloodstream Dissemination. Journal of Infectious Diseases, 2015, 211, 383-393.	1.9	27
68	Human Metapneumovirus Is Capable of Entering Cells by Fusion with Endosomal Membranes. PLoS Pathogens, 2015, 11, e1005303.	2.1	41
69	<i>Trans-</i> dimerization of JAM-A regulates Rap2 and is mediated by a domain that is distinct from the <i>cis-</i> dimerization interface. Molecular Biology of the Cell, 2014, 25, 1574-1585.	0.9	29
70	On the Need for a National Board To Assess Dual Use Research of Concern. Journal of Virology, 2014, 88, 6535-6537.	1.5	14
71	Sequence Changes Associated with Respiratory Transmission of H7N1 Influenza Virus in Mammals. Journal of Virology, 2014, 88, 6533-6534.	1.5	7
72	Efficient Norovirus and Reovirus Replication in the Mouse Intestine Requires Microfold (M) Cells. Journal of Virology, 2014, 88, 6934-6943.	1.5	103

#	Article	IF	CITATIONS
73	Reovirus Forms Neo-Organelles for Progeny Particle Assembly within Reorganized Cell Membranes. MBio, 2014, 5, .	1.8	52
74	Prevention and cure of rotavirus infection via TLR5/NLRC4–mediated production of IL-22 and IL-18. Science, 2014, 346, 861-865.	6.0	188
75	A Single-Amino-Acid Polymorphism in Chikungunya Virus E2 Glycoprotein Influences Glycosaminoglycan Utilization. Journal of Virology, 2014, 88, 2385-2397.	1.5	110
76	The sweet spot: defining virus–sialic acid interactions. Nature Reviews Microbiology, 2014, 12, 739-749.	13.6	292
77	Residue 82 of the Chikungunya Virus E2 Attachment Protein Modulates Viral Dissemination and Arthritis in Mice. Journal of Virology, 2014, 88, 12180-12192.	1.5	82
78	Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature, 2014, 514, 372-375.	13.7	459
79	A plasmid-based reverse genetics system for mammalian orthoreoviruses driven by a plasmid-encoded T7 RNA polymerase. Journal of Virological Methods, 2014, 196, 36-39.	1.0	17
80	The Nogo Receptor NgR1 Mediates Infection by Mammalian Reovirus. Cell Host and Microbe, 2014, 15, 681-691.	5.1	71
81	Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions. Molecular and Cellular Neurosciences, 2014, 61, 97-109.	1.0	21
82	Reovirus Receptors, Cell Entry, and Proapoptotic Signaling. Advances in Experimental Medicine and Biology, 2013, 790, 42-71.	0.8	60
83	Mutations in the rotavirus spike protein VP4 reduce trypsin sensitivity but not viral spread. Journal of General Virology, 2013, 94, 1296-1300.	1.3	7
84	Directional Release of Reovirus from the Apical Surface of Polarized Endothelial Cells. MBio, 2013, 4, e00049-13.	1.8	34
85	Apoptosis Induction Influences Reovirus Replication and Virulence in Newborn Mice. Journal of Virology, 2013, 87, 12980-12989.	1.5	30
86	Reovirus Cell Entry Requires Functional Microtubules. MBio, 2013, 4, .	1.8	59
87	The GM2 Glycan Serves as a Functional Coreceptor for Serotype 1 Reovirus. PLoS Pathogens, 2012, 8, e1003078.	2.1	93
88	Transport to Late Endosomes Is Required for Efficient Reovirus Infection. Journal of Virology, 2012, 86, 8346-8358.	1.5	103
89	Utilization of Sialylated Glycans as Coreceptors Enhances the Neurovirulence of Serotype 3 Reovirus. Journal of Virology, 2012, 86, 13164-13173.	1.5	34
90	In Search of Cathepsins: How Reovirus Enters Host Cells. DNA and Cell Biology, 2012, 31, 1646-1649.	0.9	12

#	Article	IF	CITATIONS
91	Molecular Determinants of Proteolytic Disassembly of the Reovirus Outer Capsid. Journal of Biological Chemistry, 2012, 287, 8029-8038.	1.6	27
92	Optimum Length and Flexibility of Reovirus Attachment Protein σ1 Are Required for Efficient Viral Infection. Journal of Virology, 2012, 86, 10270-10280.	1.5	17
93	A Single-Amino-Acid Polymorphism in Reovirus Protein μ2 Determines Repression of Interferon Signaling and Modulates Myocarditis. Journal of Virology, 2012, 86, 2302-2311.	1.5	46
94	Reverse genetics for mammalian reovirus. Methods, 2011, 55, 109-113.	1.9	44
95	The Reovirus σ1s Protein Is a Determinant of Hematogenous but Not Neural Virus Dissemination in Mice. Journal of Virology, 2011, 85, 11781-11790.	1.5	35
96	Src Kinase Mediates Productive Endocytic Sorting of Reovirus during Cell Entry. Journal of Virology, 2011, 85, 3203-3213.	1.5	50
97	Crystal Structure of Reovirus Attachment Protein ${}^\circ\!f1$ in Complex with Sialylated Oligosaccharides. PLoS Pathogens, 2011, 7, e1002166.	2.1	130
98	An improved reverse genetics system for mammalian orthoreoviruses. Virology, 2010, 398, 194-200.	1.1	149
99	Interferon Regulatory Factor 3 Attenuates Reovirus Myocarditis and Contributes to Viral Clearance. Journal of Virology, 2010, 84, 6900-6908.	1.5	38
100	From Touchdown to Transcription: The Reovirus Cell Entry Pathway. Current Topics in Microbiology and Immunology, 2010, 343, 91-119.	0.7	71
101	Reovirus μ2 Protein Inhibits Interferon Signaling through a Novel Mechanism Involving Nuclear Accumulation of Interferon Regulatory Factor 9. Journal of Virology, 2009, 83, 2178-2187.	1.5	76
102	Reovirus nonstructural protein Ïf1s is required for establishment of viremia and systemic dissemination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19986-19991.	3.3	58
103	Immunoglobulin Superfamily Virus Receptors and the Evolution of Adaptive Immunity. PLoS Pathogens, 2009, 5, e1000481.	2.1	49
104	Junctional Adhesion Molecule-A Is Required for Hematogenous Dissemination of Reovirus. Cell Host and Microbe, 2009, 5, 59-71.	5.1	105
105	Structure of Reovirus σ1 in Complex with Its Receptor Junctional Adhesion Molecule-A. PLoS Pathogens, 2008, 4, e1000235.	2.1	99
106	NPXY Motifs in the β1 Integrin Cytoplasmic Tail Are Required for Functional Reovirus Entry. Journal of Virology, 2008, 82, 3181-3191.	1.5	97
107	Reovirus Preferentially Infects the Basolateral Surface and Is Released from the Apical Surface of Polarized Human Respiratory Epithelial Cells. Journal of Infectious Diseases, 2008, 197, 1189-1197.	1.9	56
108	lκB Kinase Subunits α and γ Are Required for Activation of NF-κB and Induction of Apoptosis by Mammalian Reovirus. Journal of Virology, 2007, 81, 1360-1371.	1.5	59

#	Article	IF	CITATIONS
109	The Reovirus Ï f 1 Aspartic Acid Sandwich. Journal of Biological Chemistry, 2007, 282, 11582-11589.	1.6	24
110	Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus. Journal of Experimental Medicine, 2007, 204, 1349-1358.	4.2	74
111	A Plasmid-Based Reverse Genetics System for Animal Double-Stranded RNA Viruses. Cell Host and Microbe, 2007, 1, 147-157.	5.1	240
112	JAM-A regulates permeability and inflammation in the intestine in vivo. Journal of Experimental Medicine, 2007, 204, 3067-3076.	4.2	423
113	Identification of an NF-κB-Dependent Gene Network in Cells Infected by Mammalian Reovirus. Journal of Virology, 2006, 80, 1077-1086.	1.5	54
114	β1 Integrin Mediates Internalization of Mammalian Reovirus. Journal of Virology, 2006, 80, 2760-2770.	1.5	152
115	Prevalence of Reovirus‧pecific Antibodies in Young Children in Nashville, Tennessee. Journal of Infectious Diseases, 2005, 191, 1221-1224.	1.9	114
116	Junctional Adhesion Molecule A Serves as a Receptor for Prototype and Field-Isolate Strains of Mammalian Reovirus. Journal of Virology, 2005, 79, 7967-7978.	1.5	115
117	Organ-specific roles for transcription factor NF-κB in reovirus-induced apoptosis and disease. Journal of Clinical Investigation, 2005, 115, 2341-2350.	3.9	72
118	Peyer's Patch Dendritic Cells Process Viral Antigen from Apoptotic Epithelial Cells in the Intestine of Reovirus-infected Mice. Journal of Experimental Medicine, 2004, 200, 235-245.	4.2	131
119	Isolation and Molecular Characterization of a Novel Type 3 Reovirus from a Child with Meningitis. Journal of Infectious Diseases, 2004, 189, 1664-1675.	1.9	81
120	Structure-Function Analysis of Reovirus Binding to Junctional Adhesion Molecule 1. Journal of Biological Chemistry, 2003, 278, 48434-48444.	1.6	67
121	Reovirus σNS and μNS Proteins Form Cytoplasmic Inclusion Structures in the Absence of Viral Infection. Journal of Virology, 2003, 77, 5948-5963.	1.5	98
122	Structural Basis of Nonenveloped Virus Cell Entry. Advances in Protein Chemistry, 2003, 64, 455-491.	4.4	22
123	The role of dendritic cells in the induction of oral tolerance and immunity. Japanese Journal of Clinical Immunology, 2003, 26, 200-200.	0.0	0
124	Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease. Journal of Clinical Investigation, 2003, 111, 1823-1833.	3.9	74
125	Cathepsin L and Cathepsin B Mediate Reovirus Disassembly in Murine Fibroblast Cells. Journal of Biological Chemistry, 2002, 277, 24609-24617.	1.6	244
126	Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO Journal, 2002, 21, 1-11.	3.5	214

#	Article	IF	CITATIONS
127	Junction Adhesion Molecule Is a Receptor for Reovirus. Cell, 2001, 104, 441-451.	13.5	582
128	Reovirus Ï,NS Protein Is Required for Nucleation of Viral Assembly Complexes and Formation of Viral Inclusions. Journal of Virology, 2001, 75, 1459-1475.	1.5	71
129	The Reovirus S4 Gene 3′ Nontranslated Region Contains a Translational Operator Sequence. Journal of Virology, 2001, 75, 6517-6526.	1.5	7
130	:New Challenges to Health: The Threat of Virus Infection. Clinical Infectious Diseases, 2001, 33, 1956-1956.	2.9	2
131	A Monoclonal Antibody Specific for Reovirus Outer-Capsid Protein Ï,3 Inhibits Ï,1-Mediated Hemagglutination by Steric Hindrance. Journal of Virology, 2001, 75, 6625-6634.	1.5	33
132	Utilization of Sialic Acid as a Coreceptor Enhances Reovirus Attachment by Multistep Adhesion Strengthening. Journal of Biological Chemistry, 2001, 276, 2200-2211.	1.6	191
133	Reovirus Binding to Cell Surface Sialic Acid Potentiates Virus-Induced Apoptosis. Journal of Virology, 2001, 75, 4029-4039.	1.5	104
134	Reovirus-Induced Apoptosis Requires Activation of Transcription Factor NF-κB. Journal of Virology, 2000, 74, 2981-2989.	1.5	170
135	Divergence of Brain Prostaglandin H Synthase Activity and Oxidative Damage in Mice with Encephalitis. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1269-1275.	0.9	8
136	Sequence Diversity within the Reovirus S3 Gene: Reoviruses Evolve Independently of Host Species, Geographic Locale, and Date of Isolation. Virology, 1996, 216, 265-271.	1.1	43
137	Innate Immune Responses Elicited by Reovirus and Rotavirus. , 0, , 403-422.		0
138	Norovirus Infection Induces Inflammatory Responses to Dietary Antigens. SSRN Electronic Journal, 0, ,	0.4	0