Michael L Pegis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/806874/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical Reviews, 2018, 118, 2340-2391.	47.7	483
2	A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nature Communications, 2020, 11, 5283.	12.8	286
3	Standard Reduction Potentials for Oxygen and Carbon Dioxide Couples in Acetonitrile and <i>N</i> , <i>N</i> -Dimethylformamide. Inorganic Chemistry, 2015, 54, 11883-11888.	4.0	189
4	Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions. ACS Central Science, 2016, 2, 850-856.	11.3	150
5	Medium Effects Are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron–Porphyrin Complexes. Journal of the American Chemical Society, 2015, 137, 4296-4299.	13.7	117
6	Molecular Cobalt Catalysts for O ₂ Reduction: Low-Overpotential Production of H ₂ O ₂ and Comparison with Iron-Based Catalysts. Journal of the American Chemical Society, 2017, 139, 16458-16461.	13.7	101
7	Rational Design of Mononuclear Iron Porphyrins for Facile and Selective 4e [–] /4H ⁺ O ₂ Reduction: Activation of O–O Bond by 2nd Sphere Hydrogen Bonding. Journal of the American Chemical Society, 2018, 140, 9444-9457.	13.7	99
8	Mechanism of Catalytic O ₂ Reduction by Iron Tetraphenylporphyrin. Journal of the American Chemical Society, 2019, 141, 8315-8326.	13.7	99
9	Direct Comparison of Electrochemical and Spectrochemical Kinetics for Catalytic Oxygen Reduction. Journal of the American Chemical Society, 2014, 136, 12544-12547.	13.7	98
10	Identifying and Breaking Scaling Relations in Molecular Catalysis of Electrochemical Reactions. Journal of the American Chemical Society, 2017, 139, 11000-11003.	13.7	89
11	Highly Active NiO Photocathodes for H ₂ O ₂ Production Enabled via Outer-Sphere Electron Transfer. Journal of the American Chemical Society, 2018, 140, 4079-4084.	13.7	66
12	Developing Scaling Relationships for Molecular Electrocatalysis through Studies of Fe-Porphyrin-Catalyzed O ₂ Reduction. Accounts of Chemical Research, 2020, 53, 1056-1065.	15.6	65
13	Graphite-Conjugated Acids Reveal a Molecular Framework for Proton-Coupled Electron Transfer at Electrode Surfaces. ACS Central Science, 2019, 5, 831-841.	11.3	41
14	Interfacial Field-Driven Proton-Coupled Electron Transfer at Graphite-Conjugated Organic Acids. Journal of the American Chemical Society, 2020, 142, 20855-20864.	13.7	37
15	Molecular Magnetic Resonance Imaging of Nitric Oxide in Biological Systems. ACS Sensors, 2020, 5, 1674-1682.	7.8	18
16	Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases. Inorganic Chemistry, 2014, 53, 9242-9253.	4.0	16