List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8067876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe ₃ C Nanoparticles Boost the Activity of Fe–N _{<i>x</i>} . Journal of the American Chemical Society, 2016, 138, 3570-3578.	6.6	1,549
2	Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Journal of the American Chemical Society, 2017, 139, 8320-8328.	6.6	745
3	Pomegranate-like N,P-Doped Mo ₂ C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution. ACS Nano, 2016, 10, 8851-8860.	7.3	575
4	Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. Journal of the American Chemical Society, 2019, 141, 7005-7013.	6.6	460
5	MoS ₂ /CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H ₂ Generation under Visible Light Irradiation. ACS Applied Materials & Interfaces, 2016, 8, 15258-15266.	4.0	426
6	Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Accounts of Chemical Research, 2020, 53, 1111-1123.	7.6	315
7	Crystallinityâ€Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni ₃ B for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2017, 56, 6572-6577.	7.2	271
8	Polar Solvent Induced Lattice Distortion of Cubic CsPbl ₃ Nanocubes and Hierarchical Self-Assembly into Orthorhombic Single-Crystalline Nanowires. Journal of the American Chemical Society, 2018, 140, 11705-11715.	6.6	223
9	Embedding Pt Nanocrystals in N-Doped Porous Carbon/Carbon Nanotubes toward Highly Stable Electrocatalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 2903-2909.	5.5	221
10	Expediting in-Situ Electrochemical Activation of Two-Dimensional Metal–Organic Frameworks for Enhanced OER Intrinsic Activity by Iron Incorporation. ACS Catalysis, 2019, 9, 7356-7364.	5.5	215
11	Autogenous Growth of Hierarchical NiFe(OH) <i>_x</i> /FeS Nanosheetâ€Onâ€Microsheet Arrays for Synergistically Enhanced Highâ€Output Water Oxidation. Advanced Functional Materials, 2019, 29, 1902180.	7.8	179
12	Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc–Air Batteries with Record Power Density. Journal of the American Chemical Society, 2020, 142, 7116-7127.	6.6	147
13	When MoS2 meets FeOOH: A "one-stone-two-birds'' heterostructure as a bifunctional electrocatalyst for efficient alkaline water splitting. Applied Catalysis B: Environmental, 2019, 244, 1004-1012.	10.8	144
14	Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation. Nano Energy, 2016, 28, 319-329.	8.2	140
15	Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Applied Catalysis B: Environmental, 2020, 278, 119327.	10.8	125
16	ITO@Cu ₂ S Tunnel Junction Nanowire Arrays as Efficient Counter Electrode for Quantum-Dot-Sensitized Solar Cells. Nano Letters, 2014, 14, 365-372.	4.5	118
17	Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Applied Catalysis B: Environmental, 2019, 251, 240-246.	10.8	101
18	Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications, 2022, 13, 2430.	5.8	98

#	Article	IF	CITATIONS
19	Physical vapor deposition of amorphous MoS ₂ nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 19277-19281.	5.2	97
20	Lamellar Metal Organic Framework-Derived Fe–N–C Non-Noble Electrocatalysts with Bimodal Porosity for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2017, 9, 5272-5278.	4.0	95
21	Confining Iron Carbide Nanocrystals inside CN _{<i>x</i>} @CNT toward an Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 11508-11515.	4.0	94
22	Molecularly Engineered Strong Metal Oxide–Support Interaction Enables Highly Efficient and Stable CO ₂ Electroreduction. ACS Catalysis, 2020, 10, 13227-13235.	5.5	94
23	Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 18470-18477.	5.2	93
24	Kinetically Controlled Coprecipitation for General Fast Synthesis of Sandwiched Metal Hydroxide Nanosheets/Graphene Composites toward Efficient Water Splitting. Advanced Functional Materials, 2018, 28, 1704594.	7.8	91
25	Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters, 2021, 21, 823-832.	4.5	91
26	Sodium chloride-assisted green synthesis of a 3D Fe–N–C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7781-7787.	5.2	88
27	Facile and Scalable Synthesis of Robust Ni(OH) ₂ Nanoplate Arrays on NiAl Foil as Hierarchical Active Scaffold for Highly Efficient Overall Water Splitting. Advanced Science, 2017, 4, 1700084.	5.6	85
28	Selfâ€Catalyzed Growth of Co–N–C Nanobrushes for Efficient Rechargeable Zn–Air Batteries. Small, 2020, 16, e2001171.	5.2	84
29	Urchin-like Au@CdS/WO ₃ micro/nano heterostructure as a visible-light driven photocatalyst for efficient hydrogen generation. Chemical Communications, 2015, 51, 13842-13845.	2.2	82
30	Co/CoO/CoFe ₂ O ₄ /G nanocomposites derived from layered double hydroxides towards mass production of efficient Pt-free electrocatalysts for oxygen reduction reaction. Nanoscale, 2014, 6, 203-206.	2.8	80
31	Fe/P dual doping boosts the activity and durability of CoS ₂ polycrystalline nanowires for hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 5195-5200.	5.2	78
32	Encased Copper Boosts the Electrocatalytic Activity of N-Doped Carbon Nanotubes for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 36857-36864.	4.0	75
33	Ni ₃ S ₂ /Ni Heterostructure Nanobelt Arrays as Bifunctional Catalysts for Urea-Rich Wastewater Degradation. ACS Applied Materials & Interfaces, 2021, 13, 35709-35718.	4.0	74
34	In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 10154.	5.2	73
35	Self-terminated activation for high-yield production of N,P-codoped nanoporous carbon as an efficient metal-free electrocatalyst for Zn-air battery. Carbon, 2018, 128, 97-105.	5.4	69
36	Phase ontrolled Synthesis of 1Tâ€MoSe ₂ /NiSe Heterostructure Nanowire Arrays via Electronic Injection for Synergistically Enhanced Hydrogen Evolution. Small Methods, 2019, 3, 1800317.	4.6	67

#	Article	IF	CITATIONS
37	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64
38	Well-Defined Metal–O ₆ in Metal–Catecholates as a Novel Active Site for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2017, 9, 28473-28477.	4.0	63
39	Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Research, 2020, 13, 1376-1382.	5.8	61
40	Co@N-CNTs derived from triple-role CoAl-layered double hydroxide as an efficient catalyst for oxygen reduction reaction. Carbon, 2016, 107, 162-170.	5.4	60
41	Pore-structure-directed CO ₂ electroreduction to formate on SnO ₂ /C catalysts. Journal of Materials Chemistry A, 2019, 7, 18428-18433.	5.2	59
42	Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 15822-15828.	5.2	58
43	NiS ₂ nanodotted carnation-like CoS ₂ for enhanced electrocatalytic water splitting. Chemical Communications, 2019, 55, 3781-3784.	2.2	56
44	Organic Small Molecule Activates Transition Metal Foam for Efficient Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1906015.	11.1	56
45	Tuning the branches and composition of PtCu nanodendrites through underpotential deposition of Cu towards advanced electrocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 9014-9021.	5.2	55
46	Selective Se doping of NiFe2O4 on an active NiOOH scaffold for efficient and robust water oxidation. Chinese Journal of Catalysis, 2021, 42, 1395-1403.	6.9	51
47	From biological enzyme to single atomic Fe–N–C electrocatalyst for efficient oxygen reduction. Chemical Communications, 2018, 54, 1307-1310.	2.2	50
48	Self-deposition of Pt nanocrystals on Mn3O4 coated carbon nanotubes for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2013, 1, 7463.	5.2	47
49	Industrially Promising Nanowire Heterostructure Catalyst for Enhancing Overall Water Splitting at Large Current Density. ACS Sustainable Chemistry and Engineering, 2020, 8, 12063-12071.	3.2	38
50	In situ transformation of Cu2O@MnO2 to Cu@Mn(OH)2 nanosheet-on-nanowire arrays for efficient hydrogen evolution. Nano Research, 2018, 11, 1798-1809.	5.8	37
51	Fe-doped Co ₃ O ₄ polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc–air batteries. Chemical Communications, 2020, 56, 5374-5377.	2.2	36
52	Crystallinityâ€Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni ₃ B for Efficient Water Oxidation. Angewandte Chemie, 2017, 129, 6672-6677.	1.6	34
53	Engineering self-assembled N-doped graphene–carbon nanotube composites towards efficient oxygen reduction electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 13605-13609.	1.3	28
54	Bimetal Prussian Blue as a Continuously Variable Platform for Investigating the Composition–Activity Relationship of Phosphides-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 35904-35910.	4.0	28

#	Article	IF	CITATIONS
55	Hetero-coupling of a carbonate hydroxide and sulfide for efficient and robust water oxidation. Journal of Materials Chemistry A, 2019, 7, 21959-21965.	5.2	28
56	Composition-Dependent Morphology of Bi- and Trimetallic Phosphides: Construction of Amorphous Pd–Cu–Ni–P Nanoparticles as a Selective and Versatile Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 34804-34811.	4.0	25
57	Engineering the Interfaces of ITO@Cu ₂ S Nanowire Arrays toward Efficient and Stable Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 15448-15455.	4.0	24
58	Scalable solid-state synthesis of coralline-like nanostructured Co@CoNC electrocatalyst for Zn–air batteries. Chemical Communications, 2018, 54, 8190-8193.	2.2	23
59	V ₂ O ₃ -Decorated Spinel CoFe ₂ O ₄ with Carbon-Encapsulated Mesoporous Nanosheets for Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 980-986.	3.2	23
60	Boosting hydrogen evolution activity and durability of Pd–Ni–P nanocatalyst via crystalline degree and surface chemical state modulations. International Journal of Hydrogen Energy, 2019, 44, 31053-31061.	3.8	18
61	Regulating the charge diffusion of two-dimensional cobalt–iron hydroxide/graphene composites for high-rate water oxidation. Journal of Materials Chemistry A, 2020, 8, 11573-11581.	5.2	18
62	Self-template construction of nanoporous carbon nanorods from a metal–organic framework for supercapacitor electrodes. RSC Advances, 2018, 8, 20655-20660.	1.7	13
63	Self-supported metal sulphide nanocrystals-assembled nanosheets on carbon paper as efficient counter electrodes for quantum-dot-sensitized solar cells. Science China Chemistry, 2018, 61, 1338-1344.	4.2	7
64	Improvement on the Electrocapacitive Properties of NiO with Carbon. Chemistry Letters, 2019, 48, 90-93.	0.7	1