
Carlos P Vio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8067184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of enriched-potassium diet on cardiorespiratory outcomes in experimental non-ischemic chronic heart failure. Biological Research, 2021, 54, 43.	3.4	2
2	Canonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns. Molecular Neurobiology, 2020, 57, 1389-1404.	4.0	14
3	Dietary Potassium Downregulates Angiotensin-I Converting Enzyme, Renin, and Angiotensin Converting Enzyme 2. Frontiers in Pharmacology, 2020, 11, 920.	3.5	6
4	Potassium Intake Prevents the Induction of the Renin-Angiotensin System and Increases Medullary ACE2 and COX-2 in the Kidneys of Angiotensin II-Dependent Hypertensive Rats. Frontiers in Pharmacology, 2019, 10, 1212.	3.5	14
5	Fetal Programming of Renal Dysfunction and High Blood Pressure by Chronodisruption. Frontiers in Endocrinology, 2019, 10, 362.	3.5	16
6	Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biology, 2019, 82, 20-37.	3.6	52
7	Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus. Molecular Neurobiology, 2018, 55, 9169-9187.	4.0	16
8	Blockade of Bradykinin receptors worsens the dystrophic phenotype of mdx mice: differential effects for B1 and B2 receptors. Journal of Cell Communication and Signaling, 2018, 12, 589-601.	3.4	17
9	Imbalance in Renal Vasoactive Enzymes Induced by Mild Hypoxia: Angiotensin-Converting Enzyme Increases While Neutral Endopeptidase Decreases. Frontiers in Physiology, 2018, 9, 1791.	2.8	6
10	Bradykinin Stimulates Renal Na ⁺ and K ⁺ Excretion by Inhibiting the K ⁺ Channel (Kir4.1) in the Distal Convoluted Tubule. Hypertension, 2018, 72, 361-369.	2.7	25
11	Kir4.1 is involved in Bradykininâ€induced inhibition of NCC and natriuresis. FASEB Journal, 2018, 32, .	0.5	0
12	P2C-Type ATPases and Their Regulation. Molecular Neurobiology, 2016, 53, 1343-1354.	4.0	7
13	<i>β</i> -Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. BioMed Research International, 2015, 2015, 1-13.	1.9	18
14	Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells. American Journal of Physiology - Renal Physiology, 2015, 308, F358-F365.	2.7	49
15	The increased potassium intake improves cognitive performance and attenuates histopathological markers in a model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2630-2644.	3.8	26
16	Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2379-2390.	3.8	55
17	N-domain angiotensin-l converting enzyme is expressed in immortalized mesangial, proximal tubule and collecting duct cells. International Journal of Biological Macromolecules, 2015, 72, 380-390.	7.5	4
18	Dietary Potassium a Neglected Factor in Hypertension: Morphofunctional Evidence for Regulation of Cyclooxygenaseâ€⊋ and Kallikrein by Potassium. FASEB Journal, 2015, 29, 666.2.	0.5	0

#	Article	IF	CITATIONS
19	Role of Wnt Signaling in Tissue Fibrosis, Lessons from Skeletal Muscle and Kidney. Current Molecular Medicine, 2014, 14, 510-522.	1.3	47
20	Sildenafil Stimulates and Dexamethasone Inhibits Pulmonary Vascular Development in Congenital Diaphragmatic Hernia Rat Lungs. Neonatology, 2014, 106, 74-80.	2.0	19
21	PGE ₂ EP ₃ receptor downregulates COX-2 expression in the medullary thick ascending limb induced by hypertonic NaCl. American Journal of Physiology - Renal Physiology, 2014, 307, F736-F746.	2.7	11
22	Basic fibroblast growth factor reduces functional and structural damage in chronic kidney disease. American Journal of Physiology - Renal Physiology, 2014, 306, F430-F441.	2.7	21
23	Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling. Human Molecular Genetics, 2014, 23, 1237-1249.	2.9	143
24	NFAT5 Is Protective Against Ischemic Acute Kidney Injury. Hypertension, 2014, 63, e46-52.	2.7	21
25	Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2). Cell and Tissue Research, 2013, 353, 173-187.	2.9	67
26	Human mesenchymal stem cells derived from adipose tissue reduce functional and tissue damage in a rat model of chronic renal failure. Clinical Science, 2013, 125, 199-210.	4.3	62
27	Angiotensin II–Independent Upregulation of Cyclooxygenase-2 by Activation of the (Pro)Renin Receptor in Rat Renal Inner Medullary Cells. Hypertension, 2013, 61, 443-449.	2.7	63
28	Prostaglandin E ₂ EP3 receptor regulates cyclooxygenase-2 expression in the kidney. American Journal of Physiology - Renal Physiology, 2012, 303, F449-F457.	2.7	13
29	Eicosanoids and tumor necrosis factor-alpha in the kidney. Prostaglandins and Other Lipid Mediators, 2012, 98, 101-106.	1.9	13
30	Cyclooxygenase-2 and hypoxia-regulated proteins are modulated by basic fibroblast growth factor in acute renal failure. Biological Research, 2012, 45, 51-60.	3.4	2
31	Angiotensin II receptor type 1 blockade decreases CTGF/CCN2â€mediated damage and fibrosis in normal and dystrophic skeletal muscles. Journal of Cellular and Molecular Medicine, 2012, 16, 752-764.	3.6	72
32	Megalin/LRP2 Expression Is Induced by Peroxisome Proliferator-Activated Receptor -Alpha and -Gamma: Implications for PPARs' Roles in Renal Function. PLoS ONE, 2011, 6, e16794.	2.5	54
33	Mesenchymal stem cell injection ameliorates chronic renal failure in a rat model. Clinical Science, 2011, 121, 489-499.	4.3	67
34	Renin-angiotensin system may trigger kidney damage in NOD mice. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2011, 12, 15-22.	1.7	17
35	Effect of COXâ€2 inhibition on sodium excretion and ENaC expression in Angiotensin II induced hypertensive rats. FASEB Journal, 2010, 24, 605.12.	0.5	0
36	E Prostanoid-1 receptor regulates renal medullary αENaC in rats infused with angiotensin II. Biochemical and Biophysical Research Communications, 2009, 389, 372-377.	2.1	28

#	Article	IF	CITATIONS
37	Diabetes induces changes of catecholamines in primary mesangial cells. International Journal of Biochemistry and Cell Biology, 2008, 40, 747-754.	2.8	17
38	Inhibition of bFGF-receptor type 2 increases kidney damage and suppresses nephrogenic protein expression after ischemic acute renal failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R819-R828.	1.8	37
39	Early expression of monocyte chemoattractant protein-1 correlates with the onset of isoproterenol-induced cardiac fibrosis in rats with distinct angiotensin-converting enzyme polymorphism. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2008, 9, 154-162.	1.7	10
40	Effect of ischemic acute renal damage on the expression of COX-2 and oxidative stress-related elements in rat kidney. American Journal of Physiology - Renal Physiology, 2007, 292, F1364-F1371.	2.7	28
41	Characterization of a long-term rat mTAL cell line. American Journal of Physiology - Renal Physiology, 2007, 293, F1413-F1422.	2.7	22
42	Pregnant Rats Treated With a Serotonin Precursor Have Reduced Fetal Weight and Lower Plasma Volume and Kallikrein Levels. Hypertension, 2007, 50, 773-779.	2.7	22
43	Catecholamine Production Along the Nephron. Cellular Physiology and Biochemistry, 2007, 20, 919-924.	1.6	12
44	lschemic acute renal failure induces the expression of a wide range of nephrogenic proteins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R861-R870.	1.8	150
45	Cyclooxygenase-2 induction by bradykinin in aortic vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H30-H36.	3.2	26
46	bFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1677-R1687.	1.8	66
47	Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. American Journal of Physiology - Renal Physiology, 2005, 288, F953-F963.	2.7	86
48	Bradykinin Regulates Cyclooxygenase-2 in Rat Renal Thick Ascending Limb Cells. Hypertension, 2004, 44, 230-235.	2.7	23
49	Renal and Hormonal Effects of Water Deprivation in Late-Term Pregnant Rats. Hypertension, 2004, 44, 334-339.	2.7	13
50	Mesangial cells are able to produce catecholamines in vitro. Journal of Cellular Biochemistry, 2003, 89, 144-151.	2.6	24
51	Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases. Kidney International, 2003, 64, S57-S63.	5.2	50
52	Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney International, 2003, 64, S64-S70.	5.2	154
53	Renal angiotensin II up-regulation and myofibroblast activation in human membranous nephropathy. Kidney International, 2003, 64, S39-S45.	5.2	50
54	TNFα regulates renal COX-2 in the rat thick ascending limb (TAL). Thrombosis Research, 2003, 110, 277-280.	1.7	13

#	Article	IF	CITATIONS
55	Pregnant Rats With 5/6 Nephrectomy Have Normal Volume Expansion Despite Lower Renin and Kallikrein. Hypertension, 2003, 42, 744-748.	2.7	12
56	Renal and Vascular Injury Induced by Exogenous Angiotensin II Is AT1 Receptor-Dependent. Nephron, 2001, 87, 66-74.	1.8	34
57	Hypokalemia induces renal injury and alterations in vasoactive mediators that favor salt sensitivity. American Journal of Physiology - Renal Physiology, 2001, 281, F620-F629.	2.7	97
58	Aquaporin-2, a regulated water channel, is expressed in apical membranes of rat distal colon epithelium. American Journal of Physiology - Renal Physiology, 2001, 281, G856-G863.	3.4	50
59	Renal phenotype of low kallikrein rats. Kidney International, 2001, 59, 2233-2242.	5.2	20
60	Renal Cyclooxygenase-2. Hypertension, 2001, 38, 630-634.	2.7	9
61	Renal phenotype of low kallikrein rats. Kidney International, 2001, 59, 2233.	5.2	4
62	Induction of Cyclooxygenase-2 in Thick Ascending Limb Cells by Adrenalectomy. Journal of the American Society of Nephrology: JASN, 2001, 12, 649-658.	6.1	41
63	Sterol carrier protein 2 gene transfer changes lipid metabolism and enterohepatic sterol circulation in mice. Gastroenterology, 2000, 119, 1708-1719.	1.3	38
64	Postnatal development of cyclooxygenase-2 in the rat kidney. Immunopharmacology, 1999, 44, 205-210.	2.0	27
65	Cellular Distribution of Exogenous Aprotinin in the Rat Kidney. Biological Chemistry, 1998, 379, 1271-1278.	2.5	16
66	Induction of Renal Kallikrein and Renin Gene Expression by Insulin and IGF-I in the Diabetic Rat. Diabetes, 1997, 46, 2049-2056.	0.6	21
67	Renal Identification of Cyclooxygenase-2 in a Subset of Thick Ascending Limb Cells. Hypertension, 1997, 30, 687-692.	2.7	121
68	Cellular distribution and fate of the bradykinin antagonist HOE 140 in the rat kidney. Colocalization with the bradykinin B2 receptor. Immunopharmacology, 1996, 33, 146-150.	2.0	10
69	Postnatal maturation of tissue kallikrein-producing cells (connecting tubule cells) in the rat kidney: a morphometric and immunohistochemical study. Anatomy and Embryology, 1995, 192, 407-14.	1.5	15
70	Could Kinins Contribute to the Vasculoprotective Effect of Potassium Supplementation?. , 1995, , 80-89.		0
71	Cellular mechanisms of estrogen-and dopamine-induced control of glandular kallikrein in the anterior pituitary of the rat. Cell and Tissue Research, 1993, 274, 421-427.	2.9	7
72	Localization of Immunoreactive Tissue Kallikrein in Human Trachea. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 16-19.	2.9	35

#	Article	IF	CITATIONS
73	Hormonal Regulation of Pituitary Glandular Kallikrein: A Morphometric Study. , 1992, 38 (Pt 1), 603-608.		0
74	Localization of Immunoreactive Glandular Kallikrein in Lactotrophs of the Rat Anterior Pituitary. Neuroendocrinology, 1990, 51, 10-14.	2.5	38
75	Immunocytochemical Identification of Clandular Kallikrein in the Rat Anterior Pituitary. Advances in Experimental Medicine and Biology, 1989, 247B, 183-188.	1.6	3
76	Synthesis and expression of functional angiotensin II receptors in Xenopus oocytes injected with rat brain mRNA. Molecular Brain Research, 1987, 2, 268-270.	2.3	11
77	Kallikrein Excretion: Relationship with Maturation and Renal Function in Human Neonates at Different Gestational Ages. Neonatology, 1987, 52, 121-126.	2.0	17
78	Evidence for a stimulatory effect of high potassium diet on renal kallikrein. Kidney International, 1987, 31, 1327-1334.	5.2	79
79	Subcellular localization of renal kallikrein by ultrastructural immunocytochemistry. Kidney International, 1985, 28, 36-42.	5.2	79
80	Immunoreactive kallikrein localization in the rat kidney: an immuno-electron-microscopic study Journal of Histochemistry and Cytochemistry, 1984, 32, 117-121.	2.5	106
81	Arachidonic Acid Stimulates Renal Kallikrein Release in Isolated Rat Kidney. Clinical Science, 1982, 63, 235s-237s.	0.0	10
82	Kallikrein–Kinin and Renin–Angiotensin Systems in Renovascular Hypertension in Rats. Experimental Biology and Medicine, 1980, 163, 447-451.	2.4	3