Lynne Boddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064832/publications.pdf

Version: 2024-02-01

263 papers 13,694 citations

59 h-index 30922 102 g-index

274 all docs

274 docs citations

times ranked

274

9931 citing authors

#	Article	IF	Citations
1	Metabolic responses of two pioneer wood decay fungi to diurnally cycling temperature. Journal of Ecology, 2022, 110, 68-79.	4.0	4
2	Network traits predict ecological strategies in fungi. ISME Communications, 2022, 2, .	4.2	18
3	Making hollow trees: Inoculating living trees with wood-decay fungi for the conservation of threatened taxa - A guide for conservationists. Global Ecology and Conservation, 2022, 33, e01967.	2.1	2
4	DNA metabarcoding reveals host-specific communities of arthropods residing in fungal fruit bodies. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212622.	2.6	6
5	Legacies of invertebrate exclusion and tree secondary metabolites control fungal communities in dead wood. Molecular Ecology, 2022, 31, 3241-3253.	3.9	6
6	Fungal endophytes and origins of decay in beech (Fagus sylvatica) sapwood. Fungal Ecology, 2022, 59, 101161.	1.6	11
7	Space and patchiness affects diversity–function relationships in fungal decay communities. ISME Journal, 2021, 15, 720-731.	9.8	2
8	Home is where the heart rot is: violet click beetle, Limoniscus violaceus ($M\tilde{A}^{1/4}$ ller, 1821), habitat attributes and volatiles. Insect Conservation and Diversity, 2021, 14, 155-162.	3.0	1
9	Inhibitory effects of climate change on the growth and extracellular enzyme activities of a widespread Antarctic soil fungus. Global Change Biology, 2021, 27, 1111-1125.	9.5	20
10	Influence of European Beech (Fagales: Fagaceae) Rot Hole Habitat Characteristics on Invertebrate Community Structure and Diversity. Journal of Insect Science, 2021, 21, .	1.5	2
11	Fungal behaviour: a new frontier in behavioural ecology. Trends in Ecology and Evolution, 2021, 36, 787-796.	8.7	22
12	Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME Journal, 2020, 14, 380-388.	9.8	24
13	Incorporating alternative interaction modes, forbidden links and traitâ€based mechanisms increases the minimum trait dimensionality of ecological networks. Methods in Ecology and Evolution, 2020, 11, 1663-1672.	5.2	2
14	Ten principles for conservation translocations of threatened wood-inhabiting fungi. Fungal Ecology, 2020, 44, 100919.	1.6	15
15	Further evidence for fungivory in the Lower Devonian (Lochkovian) of the Welsh Borderland, UK. Palaontologische Zeitschrift, 2020, 94, 603-618.	1.6	3
16	Inoculum volume effects on competitive outcome and wood decay rate of brown- and white-rot basidiomycetes. Fungal Ecology, 2020, 45, 100938.	1.6	11
17	The influence of migratory Paraburkholderia on growth and competition of wood-decay fungi. Fungal Ecology, 2020, 45, 100937.	1.6	7
18	European mushroom assemblages are darker in cold climates. Nature Communications, 2019, 10, 2890.	12.8	34

#	Article	IF	Citations
19	Fungal control of early-stage bacterial community development in decomposing wood. Fungal Ecology, 2019, 42, 100868.	1.6	22
20	Predicting fungal community dynamics driven by competition for space. Fungal Ecology, 2019, 41, 13-22.	1.6	9
21	The whiff of decay: Linking volatile production and extracellular enzymes to outcomes of fungal interactions at different temperatures. Fungal Ecology, 2019, 39, 336-348.	1.6	22
22	Multiscale patterns of rarity in fungi, inferred from fruiting records. Global Ecology and Biogeography, 2019, 28, 1106-1117.	5.8	9
23	Openâ€source data reveal how collectionsâ€based fungal diversity is sensitive to global change. Applications in Plant Sciences, 2019, 7, e01227.	2.1	28
24	Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Functional Ecology, 2019, 33, 372-387.	3.6	39
25	Highly competitive fungi manipulate bacterial communities in decomposing beech wood (<i>Fagus) Tj ETQq1 1</i>	0.784314 2.7	rgBT /Overlo
26	Fungus wars: basidiomycete battles in wood decay. Studies in Mycology, 2018, 89, 117-124.	7.2	101
27	Explaining European fungal fruiting phenology with climate variability. Ecology, 2018, 99, 1306-1315.	3.2	29
28	The fungus that came in from the cold: dry rot's pre-adapted ability to invade buildings. ISME Journal, 2018, 12, 791-801.	9.8	23
29	Emergent properties arising from spatial heterogeneity influence fungal community dynamics. Fungal Ecology, 2018, 33, 32-39.	1.6	13
30	Traitâ€dependent distributional shifts in fruiting of common British fungi. Ecography, 2018, 41, 51-61.	4.5	19
31	Congruency in fungal phenology patterns across dataset sources and scales. Fungal Ecology, 2018, 32, 9-17.	1.6	14
32	The use of artificial media in fungal ecology. Fungal Ecology, 2018, 32, 87-91.	1.6	36
33	Interdependence of Primary Metabolism and Xenobiotic Mitigation Characterizes the Proteome of Bjerkandera adusta during Wood Decomposition. Applied and Environmental Microbiology, 2018, 84, .	3.1	21
34	Continentalâ€scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. Journal of Biogeography, 2018, 45, 1942-1953.	3.0	35
35	Big data integration: Pan-European fungal species observations' assembly for addressing contemporary questions in ecology and global change biology. Fungal Biology Reviews, 2017, 31, 88-98.	4.7	45
36	The Mycelium as a Network. Microbiology Spectrum, 2017, 5, .	3.0	57

#	Article	IF	CITATIONS
37	Armed and dangerous – Chemical warfare in wood decay communities. Fungal Biology Reviews, 2017, 31, 169-184.	4.7	61
38	Fineâ€scale spatiotemporal dynamics of fungal fruiting: prevalence, amplitude, range and continuity. Ecography, 2017, 40, 947-959.	4.5	14
39	Threesomes destabilise certain relationships: multispecies interactions between wood decay fungi in natural resources. FEMS Microbiology Ecology, 2017, 93, .	2.7	24
40	Chapter 12 Wood Decay Communities in Angiosperm Wood. Mycology, 2017, , 169-190.	0.5	11
41	Interactions Between Fungi and Other Microbes. , 2016, , 337-360.		21
42	Interactions with Humans and Other Animals. , 2016, , 293-336.		11
43	Pathogens of Autotrophs. , 2016, , 245-292.		39
44	Genetics – Variation, Sexuality, and Evolution. , 2016, , 99-139.		4
45	Fungi, Ecosystems, and Global Change. , 2016, , 361-400.		12
46	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi. Microbiology Spectrum, 2016, 4, .	3.0	91
47	Climate impacts on fungal community and trait dynamics. Fungal Ecology, 2016, 22, 17-25.	1.6	44
48	Location, location, location: priority effects in wood decay communities may vary between sites. Environmental Microbiology, 2016, 18, 1954-1969.	3.8	29
49	Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiology Ecology, 2016, 92, fiw 179 .	2.7	191
50	Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fungal Ecology, 2016, 21, 32-42.	1.6	54
51	Production and effects of volatile organic compounds during interspecific interactions. Fungal Ecology, 2016, 20, 144-154.	1.6	57
52	Aquatic fungal ecology – How does it differ from terrestrial?. Fungal Ecology, 2016, 19, 5-13.	1.6	66
53	Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood. Fungal Ecology, 2015, 14, 24-32.	1.6	64
54	Priority effects during fungal community establishment in beech wood. ISME Journal, 2015, 9, 2246-2260.	9.8	160

#	Article	IF	Citations
55	A fungal perspective on conservation biology. Conservation Biology, 2015, 29, 61-68.	4.7	125
56	Soils of war. New Scientist, 2014, 224, 42-45.	0.0	0
57	Effects of isopod population density on woodland decomposer microbial community function. Soil Biology and Biochemistry, 2014, 77, 112-120.	8.8	15
58	Climate variation effects on fungal fruiting. Fungal Ecology, 2014, 10, 20-33.	1.6	148
59	Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecology, 2014, 10, 34-43.	1.6	72
60	Size matters: What have we learnt from microcosm studies ofÂdecomposer fungus–invertebrate interactions?. Soil Biology and Biochemistry, 2014, 78, 274-283.	8.8	48
61	Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry, 2014, 70, 151-158.	8.8	135
62	Professor John William Gibson Cairney 1959–2012. Fungal Ecology, 2013, 6, 177.	1.6	0
63	Topâ€down control of soil fungal community composition by a globally distributed keystone consumer. Ecology, 2013, 94, 2518-2528.	3.2	119
64	Localised invertebrate grazing moderates the effect of warming on competitive fungal interactions. Fungal Ecology, 2013, 6, 137-140.	1.6	27
65	Bottom-up determination of soil collembola diversity and population dynamics in response to interactive climatic factors. Oecologia, 2013, 173, 1083-1087.	2.0	19
66	Reply to Gange et al.: Climate-driven changes in the fungal fruiting season in the United Kingdom. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E335.	7.1	4
67	Contrasting Effects of Elevated Temperature and Invertebrate Grazing Regulate Multispecies Interactions between Decomposer Fungi. PLoS ONE, 2013, 8, e77610.	2.5	17
68	Warming-induced shift in European mushroom fruiting phenology. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14488-14493.	7.1	104
69	Analysis of fungal networks. Fungal Biology Reviews, 2012, 26, 12-29.	4.7	103
70	Fungal host shifts: bias or biology?. Fungal Ecology, 2012, 5, 647-650.	1.6	5
71	Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME Journal, 2012, 6, 1992-2001.	9.8	189
72	Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Global Change Biology, 2012, 18, 1823-1832.	9.5	62

#	Article	IF	Citations
73	Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions. FEMS Microbiology Ecology, 2012, 81, 419-426.	2.7	32
74	Grazing by collembola affects the outcome of interspecific mycelial interactions of cord-forming basidiomycetes. Fungal Ecology, 2011, 4, 42-55.	1.6	15
75	Host shifts in fungi caused by climate change?. Fungal Ecology, 2011, 4, 184-190.	1.6	63
76	Ecology of Hericium cirrhatum, H. coralloides and H. erinaceus in the UK. Fungal Ecology, 2011, 4, 163-173.	1.6	43
77	Species-specific effects of grazing invertebrates on mycelial emergence and growth from woody resources into soil. Fungal Ecology, 2011, 4, 333-341.	1.6	42
78	Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecology Letters, 2011, 14, 1134-1142.	6.4	136
79	Saprotrophic basidiomycete mycelia and their interspecific interactions affect the spatial distribution of extracellular enzymes in soil. FEMS Microbiology Ecology, 2011, 78, 80-90.	2.7	58
80	Invertebrate grazing determines enzyme production by basidiomycete fungi. Soil Biology and Biochemistry, 2011, 43, 2060-2068.	8.8	67
81	Invertebrate grazing affects nitrogen partitioning in the saprotrophic fungus Phanerochaete velutina. Soil Biology and Biochemistry, 2011, 43, 2338-2346.	8.8	14
82	Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia, 2011, 167, 535-545.	2.0	74
83	Simulated nitrogen deposition affects wood decomposition by cord-forming fungi. Oecologia, 2011, 167, 1177-1184.	2.0	56
84	Mushroom's spore size and time of fruiting are strongly related: is moisture important?. Biology Letters, 2011, 7, 273-276.	2.3	58
85	Climate change and spring-fruiting fungi. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1169-1177.	2.6	81
86	Mechanism of antibacterial activity of the white-rot fungus <i>Hypholoma fasciculare</i> colonizing wood. Canadian Journal of Microbiology, 2010, 56, 380-388.	1.7	32
87	Cryptic taxa within European species of Hydnellum and Phellodon revealed by combined molecular and morphological analysis. Fungal Ecology, 2010, 3, 65-80.	1.6	19
88	The rare oak polypore Piptoporus quercinus: Population structure, spore germination and growth. Fungal Ecology, 2010, 3, 94-106.	1.6	7
89	Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecology, 2010, 3, 338-346.	1.6	175
90	Microarray analysis of differential gene expression elicited in Trametes versicolor during interspecific mycelial interactions. Fungal Biology, 2010, 114, 646-660.	2.5	34

#	Article	IF	Citations
91	Fungal network responses to grazing. Fungal Genetics and Biology, 2010, 47, 522-530.	2.1	35
92	Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor. Fungal Genetics and Biology, 2010, 47, 562-571.	2.1	98
93	Monokaryons and dikaryons of Trametes versicolor have similar combative, enzyme and decay ability. Fungal Ecology, 2010, 3, 347-356.	1.6	25
94	Nonâ€trophic effects of oribatid mites on cordâ€forming basidiomycetes in soil microcosms. Ecological Entomology, 2010, 35, 477-484.	2.2	6
95	Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience, 2009, 50, 9-19.	0.8	80
96	Collembola foraging responses to interacting fungi. Ecological Entomology, 2009, 34, 125-132.	2.2	18
97	Adaptive Biological Networks. Understanding Complex Systems, 2009, , 51-70.	0.6	21
98	Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiology Ecology, 2008, 63, 181-191.	2.7	118
99	Imaging complex nutrient dynamics in mycelial networks. Journal of Microscopy, 2008, 231, 317-331.	1.8	57
100	Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biology and Biochemistry, 2008, 40, 434-442.	8.8	63
101	Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecology, 2008, 1, 57-68.	1.6	70
102	Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecology, 2008, 1, 124-132.	1.6	21
103	Chapter 7 Interactions between saprotrophic fungi. British Mycological Society Symposia Series, 2008, , 125-141.	0.5	24
104	Chapter 14 Distribution patterns of wood-decay basidiomycetes at the landscape to global scale. British Mycological Society Symposia Series, 2008, , 263-275.	0.5	13
105	Chapter 9 Interactions between basidiomycota and invertebrates. British Mycological Society Symposia Series, 2008, 28, 155-179.	0.5	40
106	Chapter 5 Fruit bodies: Their production and development in relation to environment. British Mycological Society Symposia Series, 2008, 28, 79-103.	0.5	45
107	Chapter 12 Basidiomycete community development in temperate angiosperm wood. British Mycological Society Symposia Series, 2008, 28, 211-237.	0.5	48
108	Homokaryons are more combative than heterokaryons of Hericium coralloides. Fungal Ecology, 2008, 1, 40-48.	1.6	17

#	Article	IF	Citations
109	Chapter 1 Mycelial networks: Structure and dynamics. British Mycological Society Symposia Series, 2008, 28, 3-18.	0.5	25
110	The Interplay between Structure and Function in Fungal Networks. Topologica, 2008, 1, 004.	0.3	13
111	Biological solutions to transport network design. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2307-2315.	2.6	123
112	Rapid and Recent Changes in Fungal Fruiting Patterns. Science, 2007, 316, 71-71.	12.6	194
113	Network Organisation of Mycelial Fungi. , 2007, , 309-330.		36
114	Imaging complex nutrient dynamics in mycelial networks. , 2007, , 3-21.		9
115	Mycelial responses in heterogeneous environments: parallels with macroorganisms. , 2007, , 112-140.		16
116	Molecular and morphological discrimination of stipitate hydnoids in the genera Hydnellum and Phellodon. Mycological Research, 2007, 111, 761-777.	2.5	23
117	The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. , 2006, , 151-181.		54
118	Resource acquisition by the mycelial-cord-former Stropharia caerulea: effect of resource quantity and quality. FEMS Microbiology Ecology, 2006, 23, 195-205.	2.7	24
119	Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola). FEMS Microbiology Ecology, 2006, 58, 33-40.	2.7	46
120	Changes in Volatile Production During the Course of Fungal Mycelial Interactions Between Hypholoma fasciculare and Resinicium bicolor. Journal of Chemical Ecology, 2006, 33, 43-57.	1.8	106
121	Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete velutina and Resinicium bicolor. Mycological Research, 2006, 110, 335-345.	2.5	38
122	Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing. Mycological Research, 2006, 110, 985-993.	2.5	25
123	Identification of Marine Microalgae by Neural Network Analysis of Simple Descriptors of Flow Cytometric Pulse Shapes., 2006,, 431-443.		0
124	Is diversity of mycorrhizal fungi important for ecosystem functioning?., 2005,, 216-235.		4
125	Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 2005, 29, 795-811.	8.6	1,401
126	Evaluation of the behavioural response of the flies Megaselia halterata and Lycoriella castanescens to different mushroom cultivation materials. Entomologia Experimentalis Et Applicata, 2005, 116, 73-81.	1.4	19

#	Article	IF	Citations
127	Mycelial responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality. Mycological Research, 2005, 109, 927-935.	2.5	34
128	New PCR assay detects rare tooth fungi in wood where traditional approaches fail. Mycological Research, 2005, 109, 1187-1194.	2.5	15
129	Nutrient Movement and Mycelial Reorganization in Established Systems of Phanerochaete velutina, Following Arrival of Colonized Wood Resources. Microbial Ecology, 2005, 50, 141-151.	2.8	13
130	Inhibition and Stimulation Effects in Communities of Wood Decay Fungi: Exudates from Colonized Wood Influence Growth by Other Species. Microbial Ecology, 2005, 49, 399-406.	2.8	103
131	New approaches to investigating the function of mycelial networks. The Mycologist, 2005, 19, 11-17.	0.4	25
132	Sulphite effects on microbial respiration from sycamore leaf litter and soil in the laboratory and field. International Journal of Environmental Studies, 2004, 61, 727-733.	1.6	0
133	Collembolan grazing affects the growth strategy of the cord-forming fungus Hypholoma fasciculare. Soil Biology and Biochemistry, 2004, 36, 591-599.	8.8	46
134	Growth and interspecific interactions of the rare oak polypore Piptoporus quercinus. Mycological Research, 2004, 108, 189-197.	2.5	8
135	Interspecific interactions between the rare tooth fungi Creolophus cirrhatus, Hericium erinaceus and H. coralloides and other wood decay species in agar and wood. Mycological Research, 2004, 108, 1447-1457.	2.5	15
136	Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza, 2004, 14, 37-45.	2.8	38
137	An Evaluation of 18S rDNA Approaches for the Study of Fungal Diversity in Grassland Soils. Microbial Ecology, 2004, 47, 385-95.	2.8	75
138	Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, 2004, 82, 1016-1045.	1,1	534
139	Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biology and Biochemistry, 2003, 35, 1143-1154.	8.8	43
140	Identification of Marine Microalgae by Neural Network Analysis of Simple Descriptors of Flow Cytometric Pulse Shapes., 2003,, 355-367.		2
141	Interactions Between Ecto-mycorrhizal and Saprotrophic Fungi. Ecological Studies, 2002, , 345-372.	1.2	52
142	Interspecific carbon exchange and cost of interactions between basidiomycete mycelia in soil and wood. Functional Ecology, 2002, 16, 153-161.	3.6	39
143	Abiotic variables effect differential expression of latent infections in beech (Fagus sylvatica). New Phytologist, 2002, 155, 449-460.	7.3	55
144	Mycelial foraging by Resinicium bicolor: interactive effects of resource quantity, quality and soil composition. FEMS Microbiology Ecology, 2002, 40, 135-142.	2.7	25

#	Article	IF	Citations
145	Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique. FEMS Microbiology Ecology, 2002, 42, 1-14.	2.7	472
146	Support vector machines for identifying organisms $\hat{a} \in$ "a comparison with strongly partitioned radial basis function networks. Ecological Modelling, 2001, 146, 57-67.	2.5	60
147	Mycelial dynamics during interactions between Stropharia caerulea and other cordâ€forming, saprotrophic basidiomycetes. New Phytologist, 2001, 151, 691-704.	7.3	20
148	Pattern recognition in flow cytometry. Cytometry, 2001, 44, 195-209.	1.8	50
149	Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data. Cytometry, 2001, 44, 210-217.	1.8	30
150	Soil water potential shifts: developmental responses and dependence on phosphorus translocation by the saprotrophic, cord-forming basidiomycete Phanerochaete velutina. Mycological Research, 2001, 105, 859-867.	2.5	18
151	Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiology, 2001, 21, 71-82.	3.1	156
152	Fractal analysis in studies of mycelium in soil. Developments in Soil Science, 2000, , 211-238.	0.5	1
153	Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiology Ecology, 2000, 31, 185-194.	2.7	452
154	Training radial basis function neural networks: effects of training set size and imbalanced training sets. Journal of Microbiological Methods, 2000, 43, 33-44.	1.6	32
155	Proportion estimation with confidence limits. Journal of Microbiological Methods, 2000, 43, 55-64.	1.6	1
156	Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data. Marine Ecology - Progress Series, 2000, 195, 47-59.	1.9	68
157	Automated identification and characterisation of microbial populations using flow cytometry: the AIMS project. Scientia Marina, 2000, 64, 225-234.	0.6	25
158	Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia, 1999, 91, 13-32.	1.9	205
159	Identification of Phytoplankton from Flow Cytometry Data by Using Radial Basis Function Neural Networks. Applied and Environmental Microbiology, 1999, 65, 4404-4410.	3.1	48
160	Saprotrophic Cord-Forming Fungi: Meeting the Challenge of Heterogeneous Environments. Mycologia, 1999, 91, 13.	1.9	182
161	Dynamics of mycelial growth and phosphorus partitioning in developing mycelial cord systems of Phanerochaete velutina: dependence on carbon availability. New Phytologist, 1999, 142, 325-334.	7.3	18
162	Image analysis â€" a valuable tool for recording and analysising development of mycelial systems. The Mycologist, 1999, 13, 120-125.	0.4	11

#	Article	IF	Citations
163	Fractal analysis in studies of mycelium in soil. Geoderma, 1999, 88, 301-328.	5.1	72
164	Artificial neural networks for pattern recognition. , 1999, , 37-87.		11
165	Stripâ€cankering of beech (Fagus sylvatica): Pathology and distribution of symptomatic trees. New Phytologist, 1998, 140, 549-565.	7.3	31
166	Development of Phanerochaete velutina mycelial cord systems: effect of encounter of multiple colonised wood resources. FEMS Microbiology Ecology, 1998, 25, 257-269.	2.7	17
167	Repeated damage results in polarised development of foraging mycelial systems of Phanerochaete velutina. FEMS Microbiology Ecology, 1998, 26, 101-108.	2.7	7
168	Evaluation of artificial neural networks for fungal identification, employing morphometric data from spores of Pestalotiopsis species. Mycological Research, 1998, 102, 975-984.	2.5	20
169	Encounter with New Resources Causes Polarized Growth of the Cord-Forming Basidiomycete Phanerochaete velutina on Soil. Microbial Ecology, 1998, 36, 372-382.	2.8	10
170	Developmental and morphological responses of mycelial systems of Stropharia caerulea and Phanerochaete velutina to soil nutrient enrichment. New Phytologist, 1998, 138, 519-531.	7.3	34
171	Wood decay and phosphorus translocation by the cord-forming basidiomycete Phanerochaete velutina: the significance of local nutrient supply. New Phytologist, 1998, 138, 607-617.	7.3	33
172	Temporary phosphorus partitioning in mycelial systems of the cordâ€forming basidiomycete Phanerochaete velutina. New Phytologist, 1998, 140, 283-293.	7.3	28
173	Strip-cankering of beech (Fagus sylvatica): Pathology and distribution of symptomatic trees. New Phytologist, 1998, 140, 549-565.	7.3	27
174	Development of mycelial systems of Stropharia caerulea and Phanerochaete velutina on soil: effect of temperature and water potential. Mycological Research, 1997, 101, 705-713.	2.5	43
175	Patch formation and developmental polarity in mycelial cord systems of Phanerochaete velutina on a nutrientâ€depleted soil. New Phytologist, 1997, 136, 653-665.	7.3	38
176	Resource acquisition by the mycelial-cord-former Stropharia caerulea: effect of resource quantity and quality. FEMS Microbiology Ecology, 1997, 23, 195-205.	2.7	2
177	A comparison of some neural and non-neural methods for identification of phytoplankton from flow cytomery data. Bioinformatics, 1996, 12, 9-18.	4.1	12
178	Secondary effects of SO2 pollution on leachate chemistry and decay of Scots pine and mixed angiospermous leaf litters. Soil Biology and Biochemistry, 1996, 28, 1373-1379.	8.8	2
179	Effects of dry-deposited SO ₂ and sulphite on saprotrophic fungi and decomposition of tree leaf litter., 1996,, 70-89.		3
180	Sulphite and pH effects on CO2 evolution by fungi growing on decomposing coniferous needles. New Phytologist, 1996, 134, 155-166.	7.3	7

#	Article	IF	Citations
181	Sulphur dioxide effects on fungi growing on leaf litter and agar media. New Phytologist, 1996, 134, 167-176.	7.3	7
182	Sequential encounter of wood resources by mycelial cords of Phanerochaete velutina: effect on growth patterns and phosphorus allocation. New Phytologist, 1996, 133, 713-726.	7.3	23
183	Effect of soil and litter type on outgrowth patterns of mycelial systems of Phanerochaete velutina. FEMS Microbiology Ecology, 1996, 20, 195-204.	2.7	20
184	Phosphorus translocation by saprotrophic basidiomycete mycelial cord systems on the floor of a mixed deciduous woodland. Mycological Research, 1995, 99, 977-980.	2.5	63
185	Translocation of soil-derived phosphorus in mycelial cord systems in relation to inoculum resource size. FEMS Microbiology Ecology, 1995, 17, 67-75.	2.7	28
186	Effect of temperature on wood decay and translocation of soilâ€derived phosphorus in mycelial cord systems. New Phytologist, 1995, 129, 289-297.	7.3	47
187	Carbon translocation in mycelial cord systems of Phanerochaete velutina (DC: Pers.) Parmasto. New Phytologist, 1995, 129, 467-476.	7.3	41
188	Influence of Temperature on Germination of Primary and Secondary Conidia of Erynia neoaphidis (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology, 1995, 65, 132-138.	3.2	27
189	Wood decomposition, higher fungi, and their role in nutrient redistribution. Canadian Journal of Botany, 1995, 73, 1377-1383.	1.1	236
190	LATENT DECAY FUNGI: THE HIDDEN FOE?. Arboricultural Journal, 1994, 18, 113-135.	0.8	19
191	Neural network analysis of flow cytometric data for 40 marine phytoplankton species. Cytometry, 1994, 15, 283-293.	1.8	73
192	Translocation of 32P between wood resources recently colonised by mycelial cord systems of Phanerochaete velutina. FEMS Microbiology Ecology, 1994, 14, 201-212.	2.7	23
193	Effects of oxygen, pH and nitrate concentration on denitrification byPseudomonasspecies. FEMS Microbiology Letters, 1994, 118, 181-186.	1.8	100
194	A comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data. Bioinformatics, 1994, 10, 285-294.	4.1	18
195	Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species. FEMS Microbiology Letters, 1994, 118, 181-186.	1.8	3
196	Interactions between callus cultures of European beech, indigenous ascomycetes and derived fungal extracts. New Phytologist, 1993, 123, 421-428.	7.3	51
197	Sulphite and ph effects on co2 evolution from decomposing angiospermous and coniferous tree leaf litters. Soil Biology and Biochemistry, 1993, 25, 1513-1525.	8.8	16
198	Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycological Research, 1993, 97, 641-655.	2.5	178

#	Article	IF	CITATIONS
199	Characterization of the spatial aspects of foraging mycelial cord systems using fractal geometry. Mycological Research, 1993, 97, 762-768.	2.5	68
200	Neural Network Analysis of Flow Cytometry Data. , 1993, , 159-169.		14
201	Differential extracellular enzyme production in colonies of Coriolus versicolor, Phlebia radiata and Phlebia rufa: effect of gaseous regime. Journal of General Microbiology, 1992, 138, 2589-2598.	2.3	25
202	Identification of basidiomycete spores by neural network analysis of flow cytometry data. Mycological Research, 1992, 96, 697-701.	2.5	24
203	Effect of the nematode Panagrellus redivivus on growth and enzyme production by Phanerochaete velutina and Stereum hirsutum. Mycological Research, 1992, 96, 1019-1028.	2.5	25
204	BMS meeting. The Mycologist, 1992, 6, 156-157.	0.4	0
205	Effects of dryâ€deposited sulphur dioxide on fungal decomposition of angiosperm tree leaf litter I. Changes in communities of fungal saprotrophs. New Phytologist, 1992, 122, 97-110.	7.3	30
206	Effects of dryâ€deposited sulphur dioxide on fungal decomposition of angiosperm tree leaf litter III. Decomposition rates and fungal respiration. New Phytologist, 1992, 122, 127-140.	7.3	26
207	Extracellular enzyme localization during interspecific fungal interactions. FEMS Microbiology Letters, 1992, 98, 75-79.	1.8	60
208	Effects of dryâ€deposited sulphur dioxide on fungal decomposition of angiosperm tree leaf litter II. Chemical content of leaf litters. New Phytologist, 1992, 122, 111-125.	7. 3	23
209	Effect of lead on growth of hypholoma fasciculare and phanerochaete velutina. Micron and Microscopica Acta, 1992, 23, 353-354.	0.2	0
210	Ecological concepts in food microbiology. Journal of Applied Bacteriology, 1992, 73, 23S-38S.	1.1	66
211	Microenvironmental Aspects of Xylem Defenses to Wood Decay Fungi. Springer Series in Wood Science, 1992, , 96-132.	0.8	24
212	Mycelial responses of the soil fungus, Mortierella isabellina, to grazing by Onychiurus armatus (collembola). Soil Biology and Biochemistry, 1991, 23, 361-366.	8.8	111
213	Fungal decomposition of attached angiosperm twigs. IV. Effect of water potential on interactions between fungi on agar and in wood. New Phytologist, 1991, 117, 633-641.	7.3	15
214	Fungal decomposition of attached angiosperm twigs. II. Moisture relations of twigs of ash (Fraxinus) Tj ETQq0 0	0 rg.βT /Ον	erlock 10 Tf
215	Fungal decomposition of attached angiosperm twigs. III. Effect of water potential and temperature on fungal growth, survival and decay of wood. New Phytologist, 1991, 117, 259-269.	7.3	39
216	The fate of soil-derived phosphorus in mycelial cord systems of Phanerochaete velutina and Phallus impudicus. New Phytologist, 1990, 114, 595-606.	7.3	73

#	Article	IF	Citations
217	Fungal decomposition of attached angiosperm twigs I. Decay community development in ash, beech and oak. New Phytologist, 1990, 116, 407-415.	7.3	67
218	Wood decay, and phosphorus and fungal biomass allocation, in mycelial cord systems. New Phytologist, 1990, 116, 285-295.	7.3	71
219	11 Methods for Studying Fungi in Soil and Forest Litter. Methods in Microbiology, 1990, 22, 343-404.	0.8	58
220	Modern methods and approaches to the study of fungal ecology. The Mycologist, 1990, 4, 44-45.	0.4	0
221	A novel gas-gradient mixing device for simultaneous production of a wide range of gas concentrations. Journal of Microbiological Methods, 1990, 11, 115-120.	1.6	0
222	Spatial dynamics and interactions of the woodland fairy ring fungus, Clitocybe nebularis. New Phytologist, 1989, 111, 699-705.	7.3	59
223	Small scale variation in decay rate within logs one year after felling: Effect of fungal community structure and moisture content. FEMS Microbiology Letters, 1989, 62, 173-183.	1.8	54
224	Resource relationships of foraging mycelial systems of Phanerochaete velutina and Hypholoma fasciculare in soil. New Phytologist, 1989, 111, 501-509.	7.3	79
225	Development and extension of mycelial cords in soil at different temperatures and moisture contents. Mycological Research, 1989, 92, 383-391.	2.5	22
226	Use of gradient plates to study spore germination with several microclimatic factors varying simultaneously. Mycological Research, 1989, 93, 106-109.	2.5	2
227	Small scale variation in decay rate within logs one year after felling: Effect of fungal community structure and moisture content. FEMS Microbiology Letters, 1989, 62, 173-183.	1.8	1
228	Fungal colonization of attached beech branches. I. Early stages of development of fungal communities. New Phytologist, 1988, 110, 39-45.	7.3	62
229	Structure and development of fungal communities in beech logs four and a half years after felling. FEMS Microbiology Letters, 1988, 53, 59-70.	1.8	56
230	Fungal colonization of attached beech branches. II. Spatial and temporal organization of communities arising from latent invaders in bark and functional sapwood, under different moisture regimes. New Phytologist, 1988, 110, 47-57.	7.3	127
231	The form and outcome of mycelial interactions involving cord-forming decomposer basidiomycetes in homogeneous and heterogeneous environments. New Phytologist, 1988, 109, 423-432.	7.3	61
232	Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter I. Initial establishment. New Phytologist, 1988, 109, 335-341.	7.3	37
233	Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter II. Resource capture and persistence. New Phytologist, 1988, 109, 343-349.	7.3	59
234	Fungi and ecological disturbance University of Sheffield, 21–23 September 1987. The Mycologist, 1988, 2, 140-141.	0.4	0

#	Article	IF	Citations
235	Fungal communities in attached ash (Fraxinus excelsior) twigs. Transactions of the British Mycological Society, 1988, 91, 599-606.	0.6	27
236	Fungal Communities in the Decay of Wood. Advances in Microbial Ecology, 1988, , 115-166.	0.1	72
237	A view of disturbance and life strategies in fungi. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1988, 94, 3-11.	0.2	21
238	Foraging patterns of Phallus impudicus, Phanerochaete laevis and Steccherinum fimbriatum between discontinuous resource units in soil. FEMS Microbiology Letters, 1988, 53, 291-298.	1.8	26
239	Fungal ecology research in Britain: Decomposition ecology at university college, Cardiff. The Mycologist, 1987, 1, 168-IN8.	0.4	0
240	Temporary parasitism of Coriolus spp. by Lenzites betulina: A strategy for domain capture in wood decay fungi. FEMS Microbiology Letters, 1987, 45, 53-58.	1.8	33
241	FUNGAL COMMUNITIES IN ATTACHED ASH BRANCHES. New Phytologist, 1987, 107, 143-154.	7.3	33
242	Outgrowth Patterns of Mycelial Cord-forming Basidiomycetes from and between Woody Resource Units in Soil. Microbiology (United Kingdom), 1986, 132, 203-211.	1.8	14
243	INTERACTIONS BETWEEN MATING AND SOMATIC INCOMPATIBILITY IN THE BASIDIOMYCETE STEREUM HIRSUTUM. New Phytologist, 1985, 99, 473-483.	7.3	14
244	Ecology of Daldinia concentrica: Effect of abiotic variables on mycelial extension and interspecific interactions. Transactions of the British Mycological Society, 1985, 85, 201-211.	0.6	63
245	INTERNAL SPREAD OF FUNGI INOCULATED. New Phytologist, 1984, 98, 155-164.	7.3	12
246	Fungi inhabiting oak twigs before and at fall. Transactions of the British Mycological Society, 1984, 82, 501-505.	0.6	18
247	Wood decomposition in an abandoned beech and oak coppiced woodland in SE England Ecography, 1984, 7, 229-238.	4.5	7
248	Wood decomposition in an abandoned beech and oak coppiced woodland in SE England Ecography, 1984, 7, 218-228.	4.5	3
249	ECOLOGICAL ROLES OF BASIDIOMYCETES FORMING DECAY COMMUNITIES IN ATTACHED OAK BRANCHES. New Phytologist, 1983, 93, 77-88.	7.3	87
250	DECOMPOSITION OF SUPPRESSED OAK TREES IN EVEN-AGED PLANTATIONS. I. STAND CHARACTERISTICS AND DECAY OF AERIAL PARTS. New Phytologist, 1983, 93, 261-276.	7.3	7
251	DECOMPOSITION OF SUPPRESSED OAK TREES IN EVEN-AGED PLANTATIONS II. COLONIZATION OF TREE ROOTS BY CORD- AND RHIZOMORPH-PRODUCING BASIDIOMYCETES. New Phytologist, 1983, 93, 277-291.	7.3	37
252	ORIGINS OF DECAY IN LIVING DECIDUOUS TREES: THE ROLE OF MOISTURE CONTENT AND A RE-APPRAISAL OF THE EXPANDED CONCEPT OF TREE DECAY. New Phytologist, 1983, 94, 623-641.	7.3	156

#	Article	IF	CITATIONS
253	Carbon dioxide release from decomposing wood: Effect of water content and temperature. Soil Biology and Biochemistry, 1983, 15, 501-510.	8.8	62
254	Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems. Soil Biology and Biochemistry, 1983, 15, 149-157.	8.8	65
255	Mycelial interactions, morphogenesis and ecology of Phlebia radiata and P. rufa from oak. Transactions of the British Mycological Society, 1983, 80, 437-448.	0.6	50
256	Effect of temperature and water potential on growth rate of wood-rotting basidiomycetes. Transactions of the British Mycological Society, 1983, 80, 141-149.	0.6	108
257	Attraction of fungus gnats to zones of intraspecific antagonism on agar plates. Transactions of the British Mycological Society, 1983, 81, 149-151.	0.6	8
258	Wood decomposition in an abandoned beech and oak coppiced woodland in SE England Ecography, 1983, 6, 320-332.	4.5	5
259	Population structure, inter-mycelial interactions and infection biology of Stereum gausapatum. Transactions of the British Mycological Society, 1982, 78, 337-351.	0.6	46
260	Fungal Communities and Formation of Heartwood Wings in Attached Oak Branches Undergoing Decay. Annals of Botany, 1981, 47, 271-274.	2.9	21
261	Techniques for neural network identification of phytoplankton for the EurOPA flow cytometer., 0,,.		4
262	The Mycelium as a Network. , 0, , 335-367.		15
263	Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi., 0, , 293-308.		14