Nicolas Taberlet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064608/publications.pdf

Version: 2024-02-01

279798 330143 1,379 48 23 37 citations h-index g-index papers 49 49 49 1176 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Formation of glacier tables caused by differential ice melting: field observation and modelling. Cryosphere, 2022, 16, 2617-2628.	3.9	1
2	Particle size segregation in two-dimensional circular granular aggregates. Physical Review E, 2021, 103, 022901.	2.1	3
3	The physics of Magnus gliders. American Journal of Physics, 2021, 89, 843-850.	0.7	1
4	Onset of Glacier Tables. Physical Review Letters, 2021, 127, 108501.	7.8	7
5	Sublimation-driven morphogenesis of Zen stones on ice surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
6	Propelled Strings: Rising from Friction. Physical Review Letters, 2019, 123, 144501.	7.8	2
7	Hydrodynamics control shear-induced pattern formation in attractive suspensions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12193-12198.	7.1	53
8	Heat transfer and evaporative cooling in the function of pot-in-pot coolers. American Journal of Physics, 2018, 86, 206-211.	0.7	9
9	Synthetic schlieren—application to the visualization and characterization of air convection. European Journal of Physics, 2018, 39, 035803.	0.6	3
10	Oscillations in a half-empty bottle. American Journal of Physics, 2018, 86, 119-125.	0.7	2
11	Hydraulic logic gates: building a digital water computer. European Journal of Physics, 2018, 39, 025801.	0.6	4
12	Stability Analysis of an Array of Magnets: When Will It Jump?. Physical Review Letters, 2018, 120, 264301.	7.8	2
13	Measurement of the acoustic radiation force on a sphere embedded in a soft solid. Applied Physics Letters, 2017, 110, .	3.3	4
14	Magnetic cannon: The physics of the Gauss rifle. American Journal of Physics, 2017, 85, 495-502.	0.7	11
15	The physics of a popsicle stick bomb. American Journal of Physics, 2017, 85, 783-790.	0.7	4
16	Why do aged fluorescent tubes flicker?. European Journal of Physics, 2017, 38, 065204.	0.6	0
17	How tall can gelatin towers be? An introduction to elasticity and buckling. American Journal of Physics, 2017, 85, 908-914.	0.7	5
18	Small solar system bodies as granular systems. EPJ Web of Conferences, 2017, 140, 14011.	0.3	1

#	Article	IF	Citations
19	lon pairing controls rheological properties of "processionary―polyelectrolyte hydrogels. Soft Matter, 2016, 12, 9749-9758.	2.7	О
20	Poly(ionic liquid)s with controlled architectures and their use in the making of ionogels with high conductivity and tunable rheological properties. Polymer Chemistry, 2016, 7, 6608-6616.	3.9	14
21	Grains unchained: local fluidization of a granular packing by focused ultrasound. Soft Matter, 2016, 12, 2315-2324.	2.7	4
22	Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress. Soft Matter, 2016, 12, 1701-1712.	2.7	34
23	Mediating Gel Formation from Structurally Controlled Poly(Electrolytes) Through Multiple "Head-to-Body―Electrostatic Interactions. Macromolecular Rapid Communications, 2015, 36, 55-59.	3.9	7
24	Flow instabilities in large amplitude oscillatory shear: a cautionary tale. Rheologica Acta, 2014, 53, 885-898.	2.4	33
25	Timescales in creep and yielding of attractive gels. Soft Matter, 2014, 10, 1555.	2.7	98
26	"The hydrogen atom of fluid dynamics―– introduction to the Taylor–Couette flow for soft matter scientists. Soft Matter, 2014, 10, 3523.	2.7	92
27	Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel. Journal of Rheology, 2014, 58, 1331-1357.	2.6	53
28	Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration. Review of Scientific Instruments, 2013, 84, 045107.	1.3	73
29	Modeling a washboard road: From experimental measurements to linear stability analysis. Physical Review E, 2013, 87, 012203.	2.1	11
30	Insights on the local dynamics induced by thermal cycling in granular matter. Europhysics Letters, 2013, 104, 24001.	2.0	12
31	Shear-induced structuration of confined carbon black gels: steady-state features of vorticity-aligned flocs. Soft Matter, 2011, 7, 3920.	2.7	48
32	Lift and drag forces on an inclined plow moving over a granular surface. Physical Review E, 2011, 84, 051302.	2.1	39
33	Scaling and dynamics of washboard roads. Physical Review E, 2009, 79, 061308.	2.1	30
34	Shear-induced fragmentation of laponite suspensions. Soft Matter, 2009, 5, 3026.	2.7	57
35	The effect of sidewall friction on dense granular flows. Computers and Mathematics With Applications, 2008, 55, 230-234.	2.7	23
36	Recent advances in DEM simulations of grains in a rotating drum. Soft Matter, 2008, 4, 1345.	2.7	18

#	Article	IF	CITATIONS
37	Washboard Road: The Dynamics of Granular Ripples Formed by Rolling Wheels. Physical Review Letters, 2007, 99, 068003.	7.8	34
38	Towards a theoretical picture of dense granular flows down inclines. Nature Materials, 2007, 6, 99-108.	27.5	96
39	Rock-avalanche dynamics: insights from granular physics experiments. International Journal of Earth Sciences, 2006, 95, 911-919.	1.8	38
40	On axial segregation in a tumbler: an experimental and numerical study. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P07013-P07013.	2.3	49
41	Diffusion of a granular pulse in a rotating drum. Physical Review E, 2006, 73, 041301.	2.1	46
42	Sshape of a granular pile in a rotating drum. Physical Review E, 2006, 73, 050301.	2.1	46
43	Two- and three-dimensional confined granular chute flows: experimental and numerical results. Journal of Physics Condensed Matter, 2005, 17, S2457-S2480.	1.8	30
44	Understanding the dynamics of segregation bands of simulated granular material in a rotating drum. Europhysics Letters, 2004, 68, 522-528.	2.0	52
45	The growth of a Super Stable Heap: An experimental and numerical study. Europhysics Letters, 2004, 68, 515-521.	2.0	28
46	Superstable Granular Heap in a Thin Channel. Physical Review Letters, 2003, 91, 264301.	7.8	151
47	Two-dimensional inclined chute flows: Transverse motion and segregation. Physical Review E, 2003, 68, 051303.	2.1	25
48	Melting studies of indium: determination of the structure and density of melts at high pressures and high temperatures. Journal of Physics Condensed Matter, 2002, 14, 10533-10540.	1.8	21