Rubén López-Mondéjar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8064195/publications.pdf

Version: 2024-02-01

39 papers 2,652 citations

279798 23 h-index 302126 39 g-index

41 all docs

41 docs citations

41 times ranked

3550 citing authors

#	Article	IF	CITATIONS
1	Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	456
2	Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports, 2016, 6, 25279.	3.3	328
3	A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 2019, 10, 5142.	12.8	232
4	Drivers of microbial community structure in forest soils. Applied Microbiology and Biotechnology, 2018, 102, 4331-4338.	3.6	157
5	Differential sensitivity of total and active soil microbial communities to drought and forest management. Global Change Biology, 2017, 23, 4185-4203.	9.5	150
6	Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME Journal, 2018, 12, 1768-1778.	9.8	116
7	The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biology and Biochemistry, 2015, 87, 43-50.	8.8	112
8	Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology, 2011, 21, 122-133.	2.5	100
9	GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data, 2020, 7, 228.	5. 3	92
10	Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass. Bioresource Technology, 2010, 101, 2888-2891.	9.6	75
11	Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnology Advances, 2019, 37, 107374.	11.7	71
12	Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biology and Biochemistry, 2020, 148, 107875.	8.8	71
13	Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition. MSystems, 2021, 6, .	3.8	71
14	Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biological Control, 2011, 56, 59-66.	3.0	66
15	Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnology for Biofuels, 2016, 9, 104.	6.2	56
16	Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods. Applied Microbiology and Biotechnology, 2014, 98, 1531-1537.	3.6	49
17	Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt. Pesticide Biochemistry and Physiology, 2013, 107, 112-119.	3.6	45
18	When drought meets forest management: Effects on the soil microbial community of a Holm oak forest ecosystem. Science of the Total Environment, 2019, 662, 276-286.	8.0	45

#	Article	IF	Citations
19	The $\langle b \rangle \hat{l}^2 \langle b \rangle \hat{a} \in \mathbb{N} \langle i \rangle \hat{a} \in \mathbb{N} \langle i \rangle$ on chitin. FEBS Journal, 2009, 276, 5137-5148.	4.7	38
20	Discovery of Phloeophagus Beetles as a Source of Pseudomonas Strains That Produce Potentially New Bioactive Substances and Description of Pseudomonas bohemica sp. nov Frontiers in Microbiology, 2018, 9, 913.	3.5	35
21	Environmentally relevant concentrations of silver nanoparticles diminish soil microbial biomass but do not alter enzyme activities or microbial diversity. Journal of Hazardous Materials, 2020, 391, 122224.	12.4	33
22	Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresource Technology, 2010, 101, 3718-3723.	9.6	32
23	Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass. Biology and Fertility of Soils, 2021, 57, 77-88.	4.3	30
24	qRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media. Bioresource Technology, 2011, 102, 2793-2798.	9.6	20
25	Land use shapes the resistance of the soil microbial community and the C cycling response to drought in a semi-arid area. Science of the Total Environment, 2019, 648, 1018-1030.	8.0	20
26	Interactive impacts of boron and organic amendments in plant-soil microbial relationships. Journal of Hazardous Materials, 2021, 408, 124939.	12.4	19
27	Combined ozonation and solarization for the removal of pesticides from soil: Effects on soil microbial communities. Science of the Total Environment, 2021, 758, 143950.	8.0	18
28	Feeding on fungi: genomic and proteomic analysis of the enzymatic machinery of bacteria decomposing fungal biomass. Environmental Microbiology, 2020, 22, 4604-4619.	3.8	17
29	Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem. Geoderma, 2022, 407, 115536.	5.1	17
30	Evaluation of the effect of chitin-rich residues on the chitinolytic activity of Trichoderma harzianum: In vitro and greenhouse nursery experiments. Pesticide Biochemistry and Physiology, 2012, 103, 1-8.	3.6	16
31	Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil. Science of the Total Environment, 2020, 744, 140919.	8.0	12
32	Exploring the Plant Microbiome Through Multi-omics Approaches. , 2017, , 233-268.		11
33	SCAR-based real-time TaqMan PCR for early detection of Fusarium oxysporum in melon seedlings under greenhouse nursery conditions. Crop Protection, 2012, 33, 1-6.	2.1	10
34	Specific utilization of biopolymers of plant and fungal origin reveals the existence of substrate-specific guilds for bacteria in temperate forest soils. Soil Biology and Biochemistry, 2022, 171, 108696.	8.8	7
35	Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood. Scientific Data, 2021, 8, 198.	5.3	6
36	ADDED-VALUE OF TRICHODERMA AMENDED COMPOST AS BIOPESTICIDE ORGANIC SUBSTRATES: ALTERNATIVE TO TRADITIONAL ORGANIC SUBSTRATES. Acta Horticulturae, 2011, , 189-196.	0.2	5

#	Article	IF	CITATIONS
37	Structure and function of bacterial metaproteomes across biomes. Soil Biology and Biochemistry, 2021, 160, 108331.	8.8	3
38	Seasonal influences on bacterial community dynamics in Mediterranean pyrophytic ecosystems. Forest Ecology and Management, 2020, 478, 118520.	3.2	3
39	Microhabitat heterogeneity associated with Vanilla spp. and its influences on the microbial community of leaf litter and soil. Soil Ecology Letters, 2020, 2, 195-208.	4.5	2