List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8063993/publications.pdf Version: 2024-02-01

		53794	82547
116	6,117	45	72
papers	citations	h-index	g-index
117	117	117	5748
all docs	docs citations	times ranked	citing authors

<u> ΧιλΝ-7ητι Ειτ</u>

#	Article	IF	CITATIONS
1	Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nature Catalysis, 2022, 5, 66-73.	34.4	276
2	Recent Advances in MOFâ€Derived Single Atom Catalysts for Electrochemical Applications. Advanced Energy Materials, 2020, 10, 2001561.	19.5	265
3	Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy, 2018, 44, 7-14.	16.0	201
4	Boosting H ₂ Generation Coupled with Selective Oxidation of Methanol into Valueâ€Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts. Advanced Functional Materials, 2020, 30, 1909610.	14.9	190
5	In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Applied Catalysis B: Environmental, 2021, 281, 119510.	20.2	154
6	Metallic Co Nanoarray Catalyzes Selective NH ₃ Production from Electrochemical Nitrate Reduction at Current Densities Exceeding 2 A cm ^{â^2} . Advanced Science, 2021, 8, 2004523.	11.2	153
7	Oxygen Vacancy-Mediated Selective C–N Coupling toward Electrocatalytic Urea Synthesis. Journal of the American Chemical Society, 2022, 144, 11530-11535.	13.7	142
8	Graphene oxide nano-sheets wrapped Cu2O microspheres as improved performance anode materials for lithium ion batteries. Nano Energy, 2015, 11, 38-47.	16.0	139
9	Coupling efficient biomass upgrading with H ₂ production <i>via</i> bifunctional Cu _x S@NiCo-LDH core–shell nanoarray electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 1138-1146.	10.3	132
10	<i>In situ</i> growth of Cu(OH) ₂ @FeOOH nanotube arrays on catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-sized energy storage devices. Energy and Environmental Science, 2019, 12, 194-205.	30.8	128
11	Understanding the Roles of Electrogenerated Co ³⁺ and Co ⁴⁺ in Selectivity‶uned 5â€Hydroxymethylfurfural Oxidation. Angewandte Chemie - International Edition, 2021, 60, 20535-20542.	13.8	121
12	Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO. Nano Energy, 2018, 45, 456-462.	16.0	115
13	Porous octahedral PdCu nanocages as highly efficient electrocatalysts for the methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6, 3906-3912.	10.3	108
14	Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes. Energy and Environmental Science, 2022, 15, 439-465.	30.8	108
15	Tubular Cu(OH) ₂ arrays decorated with nanothorny Co–Ni bimetallic carbonate hydroxide supported on Cu foam: a 3D hierarchical core–shell efficient electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 10064-10073.	10.3	104
16	Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets. Applied Catalysis B: Environmental, 2020, 271, 118957.	20.2	103
17	Electro-deposition of CoNi ₂ S ₄ flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. Journal of Materials Chemistry A, 2015, 3, 23035-23041.	10.3	93
18	Constructing multifunctional â€~Nanoplatelet-on-Nanoarray' electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production. Applied Catalysis B: Environmental, 2020, 278, 119339.	20.2	93

#	Article	IF	CITATIONS
19	NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors. Electrochimica Acta, 2016, 192, 205-215.	5.2	87
20	Valueâ€Added Formate Production from Selective Methanol Oxidation as Anodic Reaction to Enhance Electrochemical Hydrogen Cogeneration. ChemSusChem, 2020, 13, 914-921.	6.8	87
21	Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 1210-1217.	5.1	84
22	Pr ₂ BaNiMnO _{7â^î^} double-layered Ruddlesden–Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells. Journal of Materials Chemistry A, 2020, 8, 7704-7712.	10.3	84
23	Hollow NiSe Nanocrystals Heterogenized with Carbon Nanotubes for Efficient Electrocatalytic Methanol Upgrading to Boost Hydrogen Coâ€Production. Advanced Functional Materials, 2021, 31, 2008812.	14.9	84
24	Co P@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. Journal of Energy Chemistry, 2020, 50, 314-323.	12.9	83
25	PdCu Alloy Flower-like Nanocages with High Electrocatalytic Performance for Methanol Oxidation. Journal of Physical Chemistry C, 2018, 122, 8976-8983.	3.1	79
26	Flexible graphene electrothermal films made from electrochemically exfoliated graphite. Journal of Materials Science, 2016, 51, 1043-1051.	3.7	76
27	CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy, 2021, 80, 105530.	16.0	76
28	NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors. Journal of Power Sources, 2015, 286, 371-379.	7.8	71
29	Oxygen Vacancies and Interface Engineering on Amorphous/Crystalline CrO _x â€Ni ₃ N Heterostructures toward Highâ€Durability and Kinetically Accelerated Water Splitting. Small, 2022, 18, e2106554.	10.0	71
30	Enhancing bifunctional electrodes of oxygen vacancy abundant ZnCo2O4 nanosheets for supercapacitor and oxygen evolution. Chemical Engineering Journal, 2021, 425, 130583.	12.7	70
31	Reducing d-p band coupling to enhance CO2 electrocatalytic activity by Mg-doping in Sr2FeMoO6-δ double perovskite for high performance solid oxide electrolysis cells. Nano Energy, 2021, 82, 105707.	16.0	67
32	Electroless Deposition Metals on Poly(dimethylsiloxane) with Strong Adhesion As Flexible and Stretchable Conductive Materials. ACS Applied Materials & Interfaces, 2018, 10, 2075-2082.	8.0	65
33	Bifunctional Pt–Co ₃ O ₄ electrocatalysts for simultaneous generation of hydrogen and formate <i>via</i> energy-saving alkaline seawater/methanol co-electrolysis. Journal of Materials Chemistry A, 2021, 9, 6316-6324.	10.3	65
34	Y-doped BaCeO3â^îδ nanopowders as proton-conducting electrolyte materials for ethane fuel cells to co-generate ethylene and electricity. Journal of Power Sources, 2010, 195, 2659-2663.	7.8	62
35	Hollow PdCo alloy nanospheres with mesoporous shells as high-performance catalysts for methanol oxidation. Journal of Colloid and Interface Science, 2018, 522, 264-271.	9.4	61
36	Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles. Applied Catalysis B: Environmental, 2018, 220, 283-289.	20.2	60

#	Article	IF	CITATIONS
37	Hierarchical nanothorns MnCo2O4 grown on porous/dense Ni bi-layers coated Cu wire current collectors for high performance flexible solid-state fiber supercapacitors. Journal of Power Sources, 2018, 393, 54-61.	7.8	58
38	Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. Journal of Materials Chemistry A, 2019, 7, 25878-25886.	10.3	57
39	Core–shell Cu@rGO hybrids filled in epoxy composites with high thermal conduction. Journal of Materials Chemistry C, 2018, 6, 257-265.	5.5	56
40	NiCo ₂ O ₄ nanoframes with a nanosheet surface as efficient electrocatalysts for the oxygen evolution reaction. Materials Chemistry Frontiers, 2018, 2, 1155-1164.	5.9	54
41	Enhanced light extraction of single-surface textured YAG:Ce transparent ceramics for high power white LEDs. Applied Surface Science, 2018, 455, 425-432.	6.1	54
42	Flowerlike NiCo ₂ S ₄ Hollow Sub-Microspheres with Mesoporous Nanoshells Support Pd Nanoparticles for Enhanced Hydrogen Evolution Reaction Electrocatalysis in Both Acidic and Alkaline Conditions. ACS Applied Materials & Interfaces, 2018, 10, 22248-22256.	8.0	52
43	Urchin-like Pd@CuO–Pd yolk–shell nanostructures: synthesis, characterization and electrocatalysis. Journal of Materials Chemistry A, 2015, 3, 13653-13661.	10.3	51
44	Interfacial engineering of Cu2Se/Co3Se4 multivalent hetero-nanocrystals for energy-efficient electrocatalytic co-generation of value-added chemicals and hydrogen. Applied Catalysis B: Environmental, 2021, 285, 119800.	20.2	51
45	Phosphoric acid-doped polybenzimidazole with a leaf-like three-layer porous structure as a high-temperature proton exchange membrane for fuel cells. Journal of Materials Chemistry A, 2021, 9, 26345-26353.	10.3	50
46	Ethane dehydrogenation over nano-Cr2O3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity. Journal of Power Sources, 2011, 196, 1036-1041.	7.8	49
47	Electrochemical Transformation of Facetâ€Controlled BiOI into Mesoporous Bismuth Nanosheets for Selective Electrocatalytic Reduction of CO ₂ to Formic Acid. ChemSusChem, 2019, 12, 4700-4707.	6.8	46
48	Î ³ -MnO2 nanorod-assembled hierarchical micro-spheres with oxygen vacancies to enhance electrocatalytic performance toward the oxygen reduction reaction for aluminum-air batteries. Journal of Energy Chemistry, 2020, 51, 81-89.	12.9	45
49	Improved full-color emission and switched luminescence in single Ca3(PO4)2: Dy3+, Eu3+ phosphors for white LEDs. Journal of Alloys and Compounds, 2017, 697, 215-221.	5.5	44
50	Toward Excellence of Electrocatalyst Design by Emerging Descriptorâ€Oriented Machine Learning. Advanced Functional Materials, 2022, 32, .	14.9	43
51	Construction of Nickelâ€Based Dual Heterointerfaces towards Accelerated Alkaline Hydrogen Evolution via Boosting Multiâ€Step Elementary Reaction. Advanced Functional Materials, 2021, 31, 2104827.	14.9	42
52	Metal-support interaction enhanced electrochemical reduction of CO2 to formate between graphene and Bi nanoparticles. Journal of CO2 Utilization, 2020, 37, 353-359.	6.8	41
53	Hollow Porous Ag Spherical Catalysts for Highly Efficient and Selective Electrocatalytic Reduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2019, 7, 14443-14450.	6.7	40
54	Shape-controlled synthesis of CoMoO4@Co1.5Ni1.5S4 hybrids with rambutan-like structure for high-performance all-solid-state supercapacitors. Chemical Engineering Journal, 2018, 346, 193-202.	12.7	39

#	Article	IF	CITATIONS
55	In situ redox growth of mesoporous Pd-Cu2O nanoheterostructures for improved glucose oxidation electrocatalysis. Science Bulletin, 2019, 64, 764-773.	9.0	39
56	Folic acid self-assembly synthesis of ultrathin N-doped carbon nanosheets with single-atom metal catalysts. Energy Storage Materials, 2021, 36, 409-416.	18.0	39
57	La0.5Sr0.5Fe0.9Mo0.1O3-δ-CeO2 anode catalyst for Co-Producing electricity and ethylene from ethane in proton-conducting solid oxide fuel cells. Ceramics International, 2021, 47, 24106-24114.	4.8	39
58	All roads lead to Rome: An energy-saving integrated electrocatalytic CO2 reduction system for concurrent value-added formate production. Chemical Engineering Journal, 2021, 412, 127893.	12.7	38
59	A highly thermally conductive electrode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 14595-14604.	10.3	36
60	Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles. Journal of Power Sources, 2021, 482, 228981.	7.8	36
61	Electro-oxidation of formaldehyde and methanol over hollow porous palladium nanoparticles with enhanced catalytic activity. Catalysis Communications, 2015, 58, 40-45.	3.3	35
62	Enhanced Li ion conductivity in Ge-doped Li _{0.33} La _{0.56} TiO ₃ perovskite solid electrolytes for all-solid-state Li-ion batteries. New Journal of Chemistry, 2018, 42, 9074-9079.	2.8	34
63	Electrochemical exfoliation from an industrial ingot: ultrathin metallic bismuth nanosheets for excellent CO ₂ capture and electrocatalytic conversion. Nanoscale, 2019, 11, 22125-22133.	5.6	34
64	An integral proton conducting SOFC for simultaneous production of ethylene and power from ethane. Chemical Communications, 2010, 46, 2052.	4.1	31
65	Microwave-assisted hydrothermal synthesis of MOFs-derived bimetallic CuCo-N/C electrocatalyst for efficient oxygen reduction reaction. Journal of Alloys and Compounds, 2019, 795, 462-470.	5.5	31
66	NiCoP 1D nanothorns grown on 3D hierarchically porous Ni films for high performance hydrogen evolution reaction. Chinese Chemical Letters, 2020, 31, 855-858.	9.0	31
67	In situ embedding of CoFe nanocatalysts into Sr3FeMoO7 matrix as high-performance anode materials for solid oxide fuel cells. Journal of Power Sources, 2020, 459, 228071.	7.8	31
68	Nickel hexacyanoferrate flower-like nanosheets coated three dimensional porous nickel films as binder-free electrodes for neutral electrolyte supercapacitors. Electrochimica Acta, 2015, 166, 157-162.	5.2	30
69	<i>In situ</i> construction of hetero-structured perovskite composites with exsolved Fe and Cu metallic nanoparticles as efficient CO ₂ reduction electrocatalysts for high performance solid oxide electrolysis cells. Journal of Materials Chemistry A, 2022, 10, 2509-2518.	10.3	30
70	PdCu alloy nanoparticles supported on reduced graphene oxide for electrocatalytic oxidation of methanol. Journal of Materials Science, 2018, 53, 15871-15881.	3.7	29
71	NiMn hydroxides supported on porous Ni/graphene films as electrically and thermally conductive electrodes for supercapacitors. Chemical Engineering Journal, 2020, 393, 124598.	12.7	27
72	Octahedral Pd nanocages with porous shells converted from Co(OH) ₂ nanocages with nanosheet surfaces as robust electrocatalysts for ethanol oxidation. Journal of Materials Chemistry A, 2018, 6, 15789-15796.	10.3	26

#	Article	IF	CITATIONS
73	Structural Anisotropy Determining the Oxygen Evolution Mechanism of Strongly Correlated Perovskite Nickelate Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 4262-4270.	6.7	26
74	Understanding the Roles of Electrogenerated Co ³⁺ and Co ⁴⁺ in Selectivityâ€īuned 5â€Hydroxymethylfurfural Oxidation. Angewandte Chemie, 2021, 133, 20698-20705.	2.0	25
75	Fabrication of bi-layered proton conducting membrane for hydrocarbon solid oxide fuel cell reactors. Electrochimica Acta, 2010, 55, 1145-1149.	5.2	24
76	3D RGO frameworks wrapped hollow spherical SnO 2 -Fe 2 O 3 mesoporous nano-shells: fabrication, characterization and lithium storage properties. Electrochimica Acta, 2016, 202, 186-196.	5.2	24
77	Low temperature-sintering and microstructure of highly transparent yttria ceramics. Journal of Alloys and Compounds, 2017, 695, 2580-2586.	5.5	24
78	Ironâ€Ðoped Nickel Phosphide Nanosheets Inâ€Situ Grown on Nickel Submicrowires as Efficient Electrocatalysts for Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 2248-2253.	3.7	24
79	High-temperature transport properties of BaSn1â^'xScxO3â^'Î^ ceramic materials as promising electrolytes for protonic ceramic fuel cells. Journal of Advanced Ceramics, 2022, 11, 1131-1143.	17.4	24
80	Co ₂ CrO ₄ Nanopowders as an Anode Catalyst for Simultaneous Conversion of Ethane to Ethylene and Power in Proton-Conducting Fuel Cell Reactors. Journal of Physical Chemistry C, 2018, 122, 4165-4171.	3.1	23
81	Morphological and electronic modification of 3D porous nickel microsphere arrays by cobalt and sulfur dual synergistic modulation for overall water splitting electrolysis and supercapacitors. Applied Surface Science, 2019, 491, 570-578.	6.1	22
82	Cogeneration of ethylene and electricity in symmetrical protonic solid oxide fuel cells based on a La _{0.6} Sr _{0.4} Fe _{0.8} Nb _{0.1} Cu _{0.1} O _{3â^î^} electrode. Journal of Materials Chemistry A, 2020, 8, 25978-25985.	› 10.3	22
83	Ni–P coated Ni foam as coking resistant current collector for solid oxide fuel cells fed by syngas. Journal of Power Sources, 2012, 198, 164-169.	7.8	21
84	Pd Nanoparticle-Interspersed Hierarchical Copper Hydroxide@Nickel Cobalt Hydroxide Carbonate Tubular Arrays as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16459-16466.	6.7	21
85	Electrolysis of waste water containing aniline to produce polyaniline and hydrogen with low energy consumption. International Journal of Hydrogen Energy, 2020, 45, 22419-22426.	7.1	21
86	NiFe P@NiCo-LDH nanoarray bifunctional electrocatalysts for coupling of methanol oxidation and hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 17150-17160.	7.1	21
87	Regulating the Electron Localization of Metallic Bismuth for Boosting CO2 Electroreduction. Nano-Micro Letters, 2022, 14, 38.	27.0	21
88	Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials. Electrochimica Acta, 2015, 176, 434-441.	5.2	19
89	Novel folic acid complex derived nitrogen and nickel co-doped carbon nanotubes with embedded Ni nanoparticles as efficient electrocatalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 5105-5114.	10.3	18
90	Co- and N-doped carbon nanotubes with hierarchical pores derived from metal–organic nanotubes for oxygen reduction reaction. Journal of Energy Chemistry, 2021, 53, 49-55.	12.9	18

#	Article	IF	CITATIONS
91	Enhanced Performance of Lithiumâ€ion Batteries with Copper Oxide Microspheres @ Graphene Oxide Micro/Nanocomposite Electrodes. Energy Technology, 2015, 3, 488-495.	3.8	17
92	Sn-Nanorod-Supported Ag Nanoparticles as Efficient Catalysts for Electroless Deposition of Cu Conductive Tracks. ACS Applied Nano Materials, 2018, 1, 1531-1540.	5.0	17
93	Alumina-Coated Cu@Reduced Graphene Oxide Microspheres as Enhanced Antioxidative and Electrically Insulating Fillers for Thermal Interface Materials with High Thermal Conductivity. ACS Applied Electronic Materials, 2019, 1, 1330-1335.	4.3	17
94	In-situ exsolved FeNi nanoparticles on perovskite matrix anode for co-production of ethylene and power from ethane in proton conducting fuel cells. Electrochimica Acta, 2021, 393, 139096.	5.2	17
95	Densely packed ultrafine SnO2 nanoparticles grown on carbon cloth for selective CO2 reduction to formate. Journal of Energy Chemistry, 2022, 71, 159-166.	12.9	17
96	Energyâ€saving H ₂ Generation Coupled with Oxidative Alcohol Refining over Bimetallic Phosphide Ni ₂ Pâ^'CoP Junction Bifunctional Electrocatalysts. ChemSusChem, 2021, 14, 5450-5459.	6.8	16
97	A facile method to fabricate lightweight copper coated polyimide film current collectors for lithium-ion batteries. Journal of Power Sources, 2022, 528, 231207.	7.8	16
98	CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode. Physical Chemistry Chemical Physics, 2011, 13, 19615.	2.8	14
99	Multiple-doped barium cerate proton-conducting electrolytes for chemical-energy cogeneration in solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 19704-19710.	7.1	14
100	Core–Shell Structured Cu(OH) ₂ @NiFe(OH) _{<i>x</i>} Nanotube Electrocatalysts for Methanol Oxidation Based Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 8723-8732.	5.0	14
101	Amorphous cobalt hydroxysulfide nanosheets with regulated electronic structure for high-performance electrochemical energy storage. Science China Materials, 2020, 63, 2303-2313.	6.3	13
102	Copper Hydroxide Porous Nanotube Arrays Grown on Copper Foils as High-Performance Integrated Electrodes for Supercapacitors. ChemistrySelect, 2017, 2, 9570-9576.	1.5	12
103	The microstructure and properties of C and W co-doped NiCr embedded thin film resistors. Surface and Coatings Technology, 2014, 259, 759-766.	4.8	11
104	Highly thermally conductive graphene-based electrodes for supercapacitors with excellent heat dissipation ability. Sustainable Energy and Fuels, 2017, 1, 2145-2154.	4.9	11
105	Lessâ€Energy Consumed Hydrogen Evolution Coupled with Electrocatalytic Removal of Ethanolamine Pollutant in Saline Water over Ni@Ni ₃ S ₂ /CNT Nanoâ€Heterostructured Electrocatalysts. Small Methods, 2022, 6, e2101195.	8.6	10
106	Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity. Advances in Physical Chemistry, 2011, 2011, 1-6.	2.0	9
107	One-pot synthesis of two-dimensional multilayered graphitic carbon nanosheets by low-temperature hydrothermal carbonization using the <i>in situ</i> formed copper as a template and catalyst. Chemical Communications, 2020, 56, 11645-11648.	4.1	9
108	Unusual Role of Point Defects in Perovskite Nickelate Electrocatalysts. ACS Applied Materials & Interfaces, 2021, 13, 24887-24895.	8.0	9

#	Article	IF	CITATIONS
109	Emerging anode materials architectured with NiCoFe ternary alloy nanoparticles for ethane-fueled protonic ceramic fuel cells. Journal of Power Sources, 2021, 515, 230634.	7.8	9
110	Bariumâ€doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â€} <i>_δ</i> perovskite anode materials for protonic ceramic fuel cells for ethane conversion. Journal of the American Ceramic Society, 2022, 105, 3613-3624.	3.8	9
111	Bowl-Like and Apple-Like PdCu Hollow Microparticles with Mesoporous Nanoshells: Synthesis, Characterization, and Electrocatalytic Performance. ACS Applied Energy Materials, 2018, 1, 3323-3330.	5.1	8
112	Adhesionâ€Enhanced Flexible Conductive Metal Patterns on Polyimide Substrate Through Direct Writing Catalysts with Novel Surfaceâ€Modification Electroless Deposition. ChemistrySelect, 2018, 3, 7612-7618.	1.5	7
113	Assembling Palladium and Cuprous Oxide Nanoclusters into Single Quantum Dots for the Electrocatalytic Oxidation of Formaldehyde, Ethanol, and Glucose. ACS Applied Nano Materials, 2020, 3, 10176-10182.	5.0	6
114	Generation of hydrogen accompanied with formate bifunctional NiCo P@NiCo-LDH nanosheet electrocatalyst. Journal of Alloys and Compounds, 2022, 906, 164305.	5.5	6
115	pH-induced phase evolution and enhanced physical properties of co-precipitated WO3-CuO powders and reduced bodies for microelectronics packaging. Ceramics International, 2018, 44, 22601-22608.	4.8	4
116	Lightweight and Compressible Expandable Polymer Microspheres/Silver Flakes Composites for High-efficiency Electromagnetic Interference Shielding. , 2021, , .		1