
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/806358/publications.pdf Version: 2024-02-01

C POBERT KAO

#	Article	IF	CITATIONS
1	Bifunctional Nanocomposites Based on SiO ₂ /NiS ₂ Combination for Electrochemical Sensing and Environmental Catalysis. Electroanalysis, 2022, 34, 111-121.	2.9	3
2	Development of Ag–In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices. Materials, 2022, 15, 1397.	2.9	7
3	Hydrothermally constructed AgWO4-rGO nanocomposites as an electrode enhancer for ultrasensitive electrochemical detection of hazardous herbicide crisquat. Chemosphere, 2022, 299, 134434.	8.2	18
4	Terminal Reaction Behaviors in Micro Bumps: Comparison of Ti and Cr Adhesion Layers. , 2022, , .		0
5	Effects of Bonding Pressures on Microstructure and Mechanical Properties of Silver-Tin Alloy Powders Synthesized by Ball Milling for High-Power Electronics Packaging. Journal of Materials Research and Technology, 2022, , .	5.8	1
6	Highly Robust Ti Adhesion Layer during Terminal Reaction in Micro-Bumps. Materials, 2022, 15, 4297.	2.9	2
7	Low-temperature transient liquid phase bonding via electroplated Sn/In–Sn metallization. Journal of Materials Research and Technology, 2022, 19, 2510-2515.	5.8	6
8	Development of high copper concentration, low operating temperature, and environmentally friendly electroless copper plating using a copper ―glycerin complex solution. Electrochimica Acta, 2022, 425, 140710.	5.2	8
9	Development of Cu-Cu Side-by-Side Interconnection Using Controlled Electroless Cu Plating. , 2022, , .		1
10	Fine-Pitch 30 μm Cu-Cu Bonding by Using Low Temperature Microfluidic Electroless Interconnection. , 2022, , .		3
11	A novel method of low temperature, pressureless interconnection for wafer level scale 3D packaging. , 2022, , .		1
12	Key steps from laboratory towards mass production: Optimization of electroless plating process through numerical simulation. , 2022, , .		1
13	Thermal Compression Cu-Cu bonding using electroless Cu and the evolution of voids within bonding interface. , 2022, , .		3
14	Copper sulfide nano-globules reinforced electrodes for high-performance electrochemical determination of toxic pollutant hydroquinone. New Journal of Chemistry, 2021, 45, 3215-3223.	2.8	14
15	Highly uniform microfluidic electroless interconnections for chip stacking applications. Electrochimica Acta, 2021, 376, 138032.	5.2	17
16	Synchrotron white Laue nanodiffraction study on the allotropic phase transformation between hexagonal and monoclinic Cu6Sn5. Journal of Materials Research and Technology, 2021, 13, 1316-1322.	5.8	5
17	A new spalling mechanism of intermetallics from the adhesion layer in the terminal-stage reaction between Cu and Sn. Intermetallics, 2021, 138, 107342.	3.9	4
18	Numerical Analysis of an Electroless Plating Problem in Gas–Liquid Two-Phase Flow. Fluids, 2021, 6, 371.	1.7	3

#	Article	IF	CITATIONS
19	Low-pressure micro-silver sintering with the addition of indium for high-temperature power chips attachment. Journal of Materials Research and Technology, 2021, 15, 4541-4553.	5.8	17
20	Surface Diffusion and the Interfacial Reaction in Cu/Sn/Ni Micro-Pillars. Journal of Electronic Materials, 2020, 49, 88-95.	2.2	5
21	Lowâ€Cost Sensorâ€Rich Fluidic Elastomer Actuators Embedded with Paper Electronics. Advanced Intelligent Systems, 2020, 2, 2080073.	6.1	0
22	The real demonstration of High-Quality Carbon Nano-Tubes (CNTs) as the electrical connection for the potential application in a vertical 3D integrated technology. , 2020, , .		3
23	Sintered Micro-Silver Paste Doped with Indium for Die Attachment Applications of Power ICs. , 2020, , .		1
24	Artifact-free microstructures of the Cu–In reaction by using cryogenic broad argon beam ion polishing. Journal of Materials Research and Technology, 2020, 9, 12946-12954.	5.8	9
25	Different interfacial structures of Cu/In obtained by surface activated bonding (SAB) in vacuum and vapor-assisted vacuum ultraviolet (V-VUV) at atmospheric pressure. Materials and Design, 2020, 195, 109065.	7.0	Ο
26	Phase stabilities and interfacial reactions of the Cu–In binary systems. Journal of Materials Science: Materials in Electronics, 2020, 31, 10161-10169.	2.2	7
27	Prior-to-bond annealing effects on the diamond-to-copper heterogeneous integration using silver–indium multilayer structure. Journal of Materials Science: Materials in Electronics, 2020, 31, 8059-8071.	2.2	6
28	Vertical Interconnections by Electroless Au Deposition on Electroless Ni Immersion Au Surface Finish. Journal of Electronic Materials, 2020, 49, 5003-5008.	2.2	6
29	Foldable Kirigami Paper Electronics. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900891.	1.8	5
30	The Demonstration of Carbon Nanotubes (CNTs) as Flip-Chip Connections in 3-D Integrated Circuits With an Ultralow Connection Resistance. IEEE Transactions on Electron Devices, 2020, 67, 2205-2207.	3.0	7
31	Low ost Sensorâ€Rich Fluidic Elastomer Actuators Embedded with Paper Electronics. Advanced Intelligent Systems, 2020, 2, 2000025.	6.1	17
32	Interconnections of Low-Temperature Solder and Metallizations. , 2020, , .		1
33	Electrical Resistance of Cu-Cu Interconnection Using Electroless Ni(P) and Au Plating. Transactions of the Japan Institute of Electronics Packaging, 2020, 13, E20-013-1-E20-013-3.	0.4	1
34	Low Temperature SLID Bonding Approach in Fine Pitch Chip-stacking Structure with 30 μm-pitch Interconnections. Transactions of the Japan Institute of Electronics Packaging, 2020, 13, E20-010-1-E20-010-4.	0.4	0
35	Effects of Isothermal Heat Treatment on Microstructure Evolution of Microfluidic Electroless Ni-P Interconnection Structure. , 2020, , .		0
36	Reaction Within Ni/Sn/Cu Microjoints for Chip-Stacking Applications. Journal of Electronic Materials, 2019, 48, 25-31.	2.2	9

#	Article	IF	CITATIONS
37	Effects of Aspect Ratio on Microstructural Evolution of Ni/Sn/Ni Microjoints. Journal of Electronic Materials, 2019, 48, 9-16.	2.2	13
38	Bonding of Copper Pillars Using Electroless Cu Plating. , 2019, , .		6
39	A Single Process for Homogeneous and Heterogeneous Bonding in Flexible Electronics : Ethanol-Assisted Vacuum Ultraviolet (E-VUV) Irradiation Process. , 2019, , .		1
40	A Single Bonding Process for Diverse Organic-Inorganic Integration in IoT Devices. , 2019, , .		0
41	Mechanical Reliability Assessment of Cu_6Sn_5 Intermetallic Compound and Multilayer Structures in Cu/Sn Interconnects for 3D IC Applications. , 2019, , .		1
42	Organic-Inorganic Solid-State Hybridization with High-Strength and Anti-Hydrolysis Interface. Scientific Reports, 2019, 9, 504.	3.3	6
43	Creep Behaviors Along Characteristic Crystal Orientations of Sn and Sn-1.8Ag by Using Nanoindentation. Jom, 2019, 71, 2998-3011.	1.9	8
44	Micropillar Mechanics of Sn-Based Intermetallic Compounds. , 2019, , 873-899.		1
45	Abnormal Cu3Sn growth through grain boundary penetration in space-confined Ni-Sn-Cu diffusion couples. Journal of Alloys and Compounds, 2019, 799, 108-112.	5.5	7
46	Phase formation and microstructure evolution in Cu/In/Cu joints. Microelectronics Reliability, 2019, 95, 18-27.	1.7	17
47	Mechanical characterizations of single-crystalline (Cu, Ni)6Sn5 through uniaxial micro-compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 753, 22-30.	5.6	10
48	Interfacial Reactions of Cu and In for Low-Temperature Processes. , 2019, , .		2
49	Hydrolysis-Tolerant Hybrid Bonding in Ambient Atmosphere for 3D Integration. , 2019, , .		Ο
50	Low Temperature and Pressureless Microfluidic Electroless Bonding Process for Vertical Interconnections. , 2019, , .		3
51	Polyimide-Polyetheretherketone and Tin-Polyimide Direct Bonding via Ethanol-Assisted Vacuum Ultraviolet Irradiation. Transactions of the Japan Institute of Electronics Packaging, 2019, 12, E19-012-1-E19-012-8.	0.4	2
52	Self-assembly of reduced Au atoms for vertical interconnections in three dimensional integrated circuits. Scripta Materialia, 2019, 159, 119-122.	5.2	13
53	Pronounced effects of Zn additions on Cu-Sn microjoints for chip-stacking applications. Journal of Alloys and Compounds, 2018, 750, 570-576.	5.5	16
54	Materials Merging Mechanism of Microfluidic Electroless Interconnection Process. Journal of the Electrochemical Society, 2018, 165, D273-D281.	2.9	19

#	Article	IF	CITATIONS
55	Micropillar Mechanics of Sn-Based Intermetallic Compounds. , 2018, , 1-28.		1
56	Enhancement of nano-silver chip attachment by using transient liquid phase reaction with indium. Journal of Alloys and Compounds, 2018, 762, 586-597.	5.5	29
57	Organic/inorganic interfacial microstructures achieved by fast atom beam bombardment and vacuum ultraviolet irradiation. , 2018, , .		3
58	Analyses and design for electrochemical migration suppression by alloying indium into silver. Journal of Materials Science: Materials in Electronics, 2018, 29, 13878-13888.	2.2	11
59	Effects of plating conditions on electroless Ni-P plating in the microchannel. , 2018, , .		1
60	Microstructure Evolution of Cu/In/Cu Joints After Solid-Liquid Interdiffusion. , 2018, , .		1
61	High Reliability Sintered Silver-Indium Bonding with Anti-Oxidation Property for High Temperature Applications. , 2018, , .		5
62	Bonding of copper pillars using electroless Au plating. , 2018, , .		2
63	Micromechanical behavior of single crystalline Ni3Sn4 in micro joints for chip-stacking applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 123-130.	5.6	10
64	Effects of surface diffusion and reaction-induced volume shrinkage on morphological evolutions of micro joints. Materials Chemistry and Physics, 2017, 191, 13-19.	4.0	20
65	Chip-to-Chip Direct Interconnections by Using Controlled Flow Electroless Ni Plating. Journal of Electronic Materials, 2017, 46, 4321-4325.	2.2	22
66	Micromechanical behavior of single-crystalline Cu6Sn5 by picoindentation. Journal of Materials Science, 2017, 52, 7166-7174.	3.7	12
67	Fast Atom Beam- and Vacuum-Ultraviolet-Activated Sites for Low-Temperature Hybrid Integration. Langmuir, 2017, 33, 8413-8419.	3.5	12
68	Critical Factors Affecting Structural Transformations in 3D IC Micro Joints. , 2017, , .		3
69	Grain Boundary Penetration of Various Types of Ni Layer by Molten Metals. Journal of Electronic Materials, 2017, 46, 4147-4151.	2.2	0
70	Development of Die Attachment Technology for Power IC Module by Introducing Indium into Sintered Nano-Silver Joint. , 2017, , .		7
71	Bonding of copper pillars using electroless Ni plating. , 2016, , .		3
72	Choice of Intermetallic Compounds for Structural Applications in Near Submicron Joints. , 2016, , .		2

IF # ARTICLE CITATIONS Novel Self-shrinking Mask for Sub-3 nm Pattern Fabrication. Scientific Reports, 2016, 6, 29625. Study of Sintered Nano-Silver Die Attachment Materials Doped with Indium., 2016, , . 74 5 Low-temperature, pressureless Cu-to-Cu bonding by electroless Ni plating., 2016, , . Pattern formation during interfacial reaction in-between liquid Sn and Cu substrates – A simulation 7.9 76 22 study. Acta Materialia, 2016, 113, 245-258. Full intermetallic joints for chip stacking by using thermal gradient bonding. Acta Materialia, 2016, 113, 90-97. 78 Morphological evolution induced by volume shrinkage in micro joints., 2016,,. 1 Au–Sn bonding material for the assembly of power integrated circuit module. Journal of Alloys and 79 5.5 Compounds, 2016, 671, 340-345. Interfacial Energy Effect on the Distribution of Ag₃Sn in Full Intermetallic Joints. 80 3.5 3 Advanced Engineering Materials, 2015, 17, 1528-1531. Effect of Ag concentration on Ni/Sn-xAg/Ni micro joints under space confinement., 2015, , . Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications. 82 5.5 32 Journal of Alloys and Compounds, 2015, 629, 16-21. Mechanism of volume shrinkage during reaction between Ni and Ag-doped Sn. Materials Letters, 2015, 156, 150-152. Dominant effects of Sn orientation on serrated cathode dissolution and resulting failure in actual 84 5.5 40 solder joints under electromigration. Journal of Alloys and Compounds, 2015, 627, 281-286. Low temperature bonding for high temperature applications by using SnBi solders. Journal of Alloys 5.5 43 and Compounds, 2015, 647, 681-685. In situ observations of micromechanical behaviors of intermetallic compounds for structural 86 3 applications in 3D IC micro joints., 2015,,. Reduction of electromigration damage in SAC305 solder joints by adding Ni nanoparticles through flux doping. Journal of Materials Science, 2015, 50, 6748-6756. Silver as a highly effective bonding layer for lead telluride thermoelectric modules assembled by 88 9.2 25 rapid hot-pressing. Energy Conversion and Management, 2015, 98, 134-137. Development of interconnection materials for Bi<inf>2</inf>Te<inf>3</inf> and PbTe thermoelectric module by using SLID technique., 2015,,. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. 90 5.5 37 Journal of Materials Chemistry C, 2015, 3, 10590-10596.

C ROBERT KAO

#	Article	IF	CITATIONS
91	Thermal Stress of Surface Oxide Layer on Micro Solder Bumps During Reflow. Journal of Electronic Materials, 2015, 44, 744-750.	2.2	3
92	Inhibition of Gold Embrittlement in Micro-joints for Three-Dimensional Integrated Circuits. Journal of Electronic Materials, 2014, 43, 4262-4265.	2.2	10
93	Interfacial reactions between Cu and Sn, Sn-Ag, Sn-Bi, Sn-Zn solder under space confinement for 3D IC micro joint applications. , 2014, , .		0
94	Effects of silver addition on Cu–Sn microjoints for chip-stacking applications. Journal of Alloys and Compounds, 2014, 605, 193-198.	5.5	42
95	Amorphous Pd layer as a highly effective oxidation barrier for surface finish of electronic terminals. Corrosion Science, 2014, 83, 419-422.	6.6	10
96	Effects of Sn grain orientation on substrate dissolution and intermetallic precipitation in solder joints under electron current stressing. Scripta Materialia, 2014, 80, 37-40.	5.2	56
97	Phase field microelasticity model of dislocation climb: Methodology and applications. Acta Materialia, 2014, 79, 396-410.	7.9	29
98	Volume Shrinkage Induced by Interfacial Reaction in Micro-Ni/Sn/Ni Joints. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2343-2346.	2.2	26
99	Growth kinetics of Ag3Sn in silicon solar cells with a sintered Ag metallization layer. Solar Energy Materials and Solar Cells, 2014, 123, 139-143.	6.2	33
100	Precipitation induced by diffusivity anisotropy in Sn grains under electron current stressing. Journal of Alloys and Compounds, 2013, 555, 237-240.	5.5	19
101	Gold and palladium embrittlement issues in three-dimensional integrated circuit interconnections. Materials Letters, 2013, 110, 13-15.	2.6	15
102	Effects of Ag concentration on the Ni-Sn interfacial reaction for 3D-IC applications. , 2013, , .		0
103	Au and Pd embrittlement in space-confined soldering reactions for 3D IC applications. , 2013, , .		1
104	Assembly of N type Bi ₂ (Te, Se) ₃ thermoelectric modules by low temperature bonding. Science and Technology of Welding and Joining, 2013, 18, 421-424.	3.1	7
105	Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics. Microelectronics Reliability, 2013, 53, 47-52.	1.7	54
106	Reactions of Sn-4.0Ag-0.5Cu on Cu and Electroless Ni Substrate in Premelting Soldering Process. Journal of Electronic Materials, 2013, 42, 1254-1259.	2.2	9
107	Volume shrinkage induced by interfacial reactions in micro joints. , 2013, , .		1
108	Cu(TiWNx) Film as a Barrierless Buffer Layer for Metallization Applications. Japanese Journal of Applied Physics, 2013, 52, 01AC12.	1.5	8

#	Article	IF	CITATIONS
109	Serrated cathode dissolution under high current density: Morphology and root cause. Journal of Applied Physics, 2013, 114, .	2.5	4
110	Grain refinement of solder materials by minor element addition. , 2013, , .		0
111	Interfacial Reactions and Electromigration in Flip-Chip Solder Joints. , 2013, , 503-560.		5
112	Soldering reactions under space confinement for 3D IC applications. , 2012, , .		6
113	Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages. IEEE Transactions on Device and Materials Reliability, 2012, 12, 233-240.	2.0	81
114	Origin and evolution of voids in electroless Ni during soldering reaction. Acta Materialia, 2012, 60, 4586-4593.	7.9	33
115	Effects of Ti addition to Sn–Ag and Sn–Cu solders. Journal of Alloys and Compounds, 2012, 520, 244-249.	5.5	86
116	Roles of phosphorous in Sn4Ag0.5Cu solder reaction with electrolytic Ni–Au. Journal of Alloys and Compounds, 2012, 539, 57-62.	5.5	9
117	Mechanism for serrated cathode dissolution in Cu/Sn/Cu interconnect under electron current stressing. Acta Materialia, 2012, 60, 2082-2090.	7.9	68
118	Elimination of voids in reactions between Ni and Sn: A novel effect of silver. Scripta Materialia, 2012, 66, 171-174.	5.2	80
119	The critical oxide thickness for Pb-free reflow soldering on Cu substrate. Thin Solid Films, 2012, 520, 5346-5352.	1.8	26
120	Growth of CuAl intermetallic compounds in Cu and Cu(Pd) wire bonding. , 2011, , .		33
121	Consumption of Cu pad during multiple reflows of Ni-doped SnAgCu solder. International Journal of Materials Research, 2011, 102, 579-583.	0.3	Ο
122	The orientation relationship between Ni and Cu6Sn5 formed during the soldering reaction. Scripta Materialia, 2011, 65, 331-334.	5.2	30
123	Laminar pattern induced by cycling thermomechanical stress in two-phase materials. Materials Chemistry and Physics, 2011, 130, 413-417.	4.0	Ο
124	Investigation of growth behavior of Al–Cu intermetallic compounds in Cu wire bonding. Microelectronics Reliability, 2011, 51, 125-129.	1.7	45
125	Analysis and experimental verification of the competing degradation mechanisms for solder joints under electron current stressing. Acta Materialia, 2011, 59, 2462-2468.	7.9	52
126	Effects of Joining Sequence on the Interfacial Reactions and Substrate Dissolution Behaviors in Ni/Solder/Cu Joints. Journal of Electronic Materials, 2011, 40, 1912-1920.	2.2	30

#	Article	IF	CITATIONS
127	Experimental Evidence for Formation of Ni-Al Compound in Flip-Chip Joints Under Current Stressing. Journal of Electronic Materials, 2011, 40, 2076-2080.	2.2	1
128	Critical new issues relating to interfacial reactions arising from low solder volume in 3D IC packaging. , 2011, , .		8
129	Electromigration in flip chip solder joints under extra high current density. Journal of Applied Physics, 2010, 107, 073516.	2.5	22
130	Interfacial Reaction Between 95Pb-5Sn Solder Bump and 37Pb-63Sn Presolder in Flip-Chip Solder Joints. Journal of Electronic Materials, 2010, 39, 1289-1294.	2.2	8
131	Interaction Between Ni and Cu Across 95Pb-5Sn High-Lead Layer. Journal of Electronic Materials, 2010, 39, 2662-2668.	2.2	9
132	Effects of Ni Additions on the Growth of Cu3Sn in High-Lead Solders. Journal of Electronic Materials, 2010, 39, 2636-2642.	2.2	8
133	Transmission Electron Microscopy Characterization of Ni(V) Metallization Stressed Under High Current Density in Flip Chip Solder Joints. Journal of Electronic Materials, 2010, 39, 2528-2535.	2.2	2
134	Uncovering the driving force for massive spalling in the Sn–Cu/Ni system. Scripta Materialia, 2010, 63, 47-49.	5.2	27
135	Direct evidence for a Cu-enriched region at the boundary between Cu6Sn5 and Cu3Sn during Cu/Sn reaction. Scripta Materialia, 2010, 63, 258-260.	5.2	48
136	The effects of solder volume and Cu concentration on the consumption rate of Cu pad during reflow soldering. Journal of Alloys and Compounds, 2010, 492, 99-104.	5.5	93
137	Inhibiting the formation of microvoids in Cu3Sn by additions of Cu to solders. Journal of Alloys and Compounds, 2010, 493, 233-239.	5.5	39
138	Grain growth sequence of Cu3Sn in the Cu/Sn and Cu/Sn–Zn systems. Journal of Alloys and Compounds, 2010, 494, 123-127.	5.5	24
139	Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni. Journal of Alloys and Compounds, 2010, 499, 149-153.	5.5	46
140	Novel Cu–RuNx composite layer with good solderability and very low consumption rate. Journal of Alloys and Compounds, 2010, 504, L25-L27.	5.5	12
141	Sn concentration effect on the formation of intermetallic compounds in high-Pb/Ni reactions. Journal of Alloys and Compounds, 2010, 504, 341-344.	5.5	14
142	Temperature effects on electromigration behavior of solder joints. , 2010, , .		0
143	Cross-interaction between Ni and Cu across a high-lead solder joint with different solder volume. , 2010, , .		0
144	Effects of Ni addition to high-lead solders on the growth of Cu <inf>3</inf> Sn and micro voids. , 2009, , .		0

C ROBERT KAO

#	Article	IF	CITATIONS
145	Effect of Sn concentration on massive spalling in high-Pb soldering reaction with Cu substrate. Journal of Materials Research, 2009, 24, 3407-3411.	2.6	10
146	Interfacial Reaction and Wetting Behavior Between Pt and Molten Solder. Journal of Electronic Materials, 2009, 38, 25-32.	2.2	14
147	Fundamental Study of the Intermixing of 95Pb-5Sn High-Lead Solder Bumps and 37Pb-63Sn Pre-Solder on Chip-Carrier Substrates. Journal of Electronic Materials, 2009, 38, 2234-2241.	2.2	6
148	Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates. Microelectronics Reliability, 2009, 49, 248-252.	1.7	93
149	Development of lead-free solders with superior drop test reliability performance. , 2009, , .		3
150	Interfacial reaction and the dominant diffusing species in Mg–Ni system. Journal of Alloys and Compounds, 2009, 471, 90-92.	5.5	20
151	Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth. Journal of Alloys and Compounds, 2009, 478, L1-L4.	5.5	84
152	Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu. Journal of Alloys and Compounds, 2009, 478, 121-127.	5.5	163
153	Effects of Cu content on the dissolution rate of Cu for real solder joint during reflow soldering. , 2009, , .		Ο
154	Transmission electron microscopy characterization of the porous structure induced by high current density in the flip-chip solder joints. , 2009, , .		0
155	Effect of multiple reflow cycles on ball impact responses of Snâ€Agâ€Cu solder joints. Soldering and Surface Mount Technology, 2009, 21, 4-9.	1.5	5
156	Lead-free and lead-bearing electronic solders: Implementation, reliability, and new technology. Jom, 2008, 60, 60-60.	1.9	0
157	Tin Whisker Growth Induced by High Electron Current Density. Journal of Electronic Materials, 2008, 37, 17-22.	2.2	27
158	Effect of UBM Thickness on the Mean Time to Failure of Flip-Chip Solder Joints under Electromigration. Journal of Electronic Materials, 2008, 37, 96-101.	2.2	25
159	Analysis and Experimental Verification of the Volume Effect in the Reaction Between Zn-Doped Solders and Cu. Journal of Electronic Materials, 2008, 37, 1591-1597.	2.2	18
160	Microstructure Study of High Lead Bump FCBGA Bending Test. , 2008, , .		1
161	Minor Fe, Co, and Ni additions to SnAgCu solders for retarding Cu <inf>3</inf> Sn growth. , 2008, , .		3
162	Effect of Multiple Reflow Cycles on Ball Impact Responses of Sn-4Ag-0.5Cu Solder Joints with		1

Immersion Tin Substrate Pad Finish. , 2008, , .

#	Article	IF	CITATIONS
163	Pronounced electromigration of Cu in molten Sn-based solders. Journal of Materials Research, 2008, 23, 250-257.	2.6	49
164	Tin whisker growth induced by high electron current density. , 2007, , .		8
165	Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element. Journal of Applied Physics, 2007, 101, 084911.	2.5	42
166	Massive Spalling of Intermetallics in Solder Joints: a General Phenomenon that Can Occur in Multiple Solder-Substrate Systems. , 2007, , .		1
167	Role of minor Zn addition in the interfacial reaction between lead-free solders and Cu. , 2007, , .		0
168	Dissolution and interfacial reaction between Cu and Sn-Ag-Cu solders. , 2007, , .		6
169	The effects of minor Fe, Co, and Ni additions to lead-free solders on the thickness of Cu <inf>3</inf> Sn at the interface. , 2007, , .		1
170	Cross-Interaction between Ni and Cu across Sn Layers with Different Thickness. Journal of Electronic Materials, 2007, 36, 1455-1461.	2.2	60
171	Interfacial reaction issues for lead-free electronic solders. Journal of Materials Science: Materials in Electronics, 2006, 18, 155-174.	2.2	206
172	In-situ observation of material migration in flip-chip solder joints under current stressing. Journal of Electronic Materials, 2006, 35, 1781-1786.	2.2	9
173	Microstructure evolution of gold-tin eutectic solder on Cu and Ni substrates. Journal of Electronic Materials, 2006, 35, 65-71.	2.2	36
174	Kinetics of AuSn4 migration in lead-free solders. Journal of Electronic Materials, 2006, 35, 1948-1954.	2.2	26
175	Effect of surface finish on the failure mechanisms of flip-chip solder joints under electromigration. Journal of Electronic Materials, 2006, 35, 2147-2153.	2.2	31
176	Cross-interaction between Au and Cu in Au/Sn/Cu ternary diffusion couples. Journal of Electronic Materials, 2006, 35, 366-371.	2.2	28
177	Local melting induced by electromigration in flip-chip solder joints. Journal of Electronic Materials, 2006, 35, 1005-1009.	2.2	58
178	Electromigration-induced UBM consumption and the resulting failure mechanisms in flip-chip solder joints. Journal of Electronic Materials, 2006, 35, 1010-1016.	2.2	44
179	Effects of limited cu supply on soldering reactions between SnAgCu and Ni. Journal of Electronic Materials, 2006, 35, 1017-1024.	2.2	138
180	Effect of Zn Addition on the Interfacial Reactions between Cu and Lead-Free Solders. Materials Research Society Symposia Proceedings, 2006, 968, 1.	0.1	1

#	Article	IF	CITATIONS
181	Massive Spalling of Intermetallic Compound in Lead-Free Solder Joints. Materials Research Society Symposia Proceedings, 2006, 968, 1.	0.1	1
182	Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu. Journal of Materials Research, 2006, 21, 2436-2439.	2.6	89
183	Interfacial reaction issues for lead-free electronic solders. , 2006, , 155-174.		40
184	Solid-state reactions between Ni and Sn–Ag–Cu solders with different Cu concentrations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 385-391.	5.6	110
185	In situ observation of the void formation-and-propagation mechanism in solder joints under current-stressing. Acta Materialia, 2005, 53, 2029-2035.	7.9	134
186	Electromigration-induced failure in flip-chip solder joints. Journal of Electronic Materials, 2005, 34, 27-33.	2.2	94
187	Controlling the microstructure from the gold-tin reaction. Journal of Electronic Materials, 2005, 34, 182-187.	2.2	99
188	Electromigration Induced Metal Dissolution in Flip-Chip Solder Joints. Materials Science Forum, 2005, 475-479, 2655-2658.	0.3	2
189	Electromigration-induced grain rotation in anisotropic conducting beta tin. Applied Physics Letters, 2005, 86, 241902.	3.3	74
190	Synchrotron X-ray Micro-diffraction Analysis on Microstructure Evolution in Sn under Electromigration. Materials Research Society Symposia Proceedings, 2005, 863, B9.10-1.	0.1	4
191	Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction. Applied Physics Letters, 2004, 85, 2490-2492.	3.3	66
192	Cross-interaction of under-bump metallurgy and surface finish in flip-chip solder joints. Journal of Electronic Materials, 2004, 33, 1424-1428.	2.2	61
193	Effects of the gold thickness of the surface finish on the interfacial reactions in flip-chip solder joints. Journal of Electronic Materials, 2004, 33, 1092-1097.	2.2	17
194	A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni. Journal of Electronic Materials, 2003, 32, 1203-1208.	2.2	144
195	Recent progress in phase diagram calculation and application. Jom, 2003, 55, 47-47.	1.9	1
196	Electromigration failure in flip chip solder joints due to rapid dissolution of copper. Journal of Materials Research, 2003, 18, 2544-2548.	2.6	125
197	Effect of Cu concentration on the interfacial reactions between Ni and Sn–Cu solders. Journal of Materials Research, 2002, 17, 263-266.	2.6	203
198	Reactions between Sn–Ag–Cu leadâ€free solders and the Au/Ni surface finish in advanced electronic packages. Soldering and Surface Mount Technology, 2002, 14, 25-29.	1.5	106

#	Article	IF	CITATIONS
199	Strong Effect of Cu Concentration on the Reaction between Lead-Free Microelectronic Solders and Ni. Chemistry of Materials, 2002, 14, 949-951.	6.7	82
200	Phase diagrams of important electronic materials. Jom, 2002, 54, 44-44.	1.9	3
201	Inhibiting the formation of (Au1â^'xNix)Sn4 and reducing the consumption of Ni metallization in solder joints. Journal of Electronic Materials, 2002, 31, 1264-1269.	2.2	64
202	Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni. Journal of Electronic Materials, 2002, 31, 584-590.	2.2	298
203	Reaction of solder with Ni/Au metallization for electronic packages during reflow soldering. IEEE Transactions on Advanced Packaging, 2001, 24, 493-498.	1.6	50
204	Selective Interfacial Reaction between Ni and Eutectic BiSn Lead-Free Solder. Chemistry of Materials, 2001, 13, 1051-1056.	6.7	55
205	Interactions between solder and metallization during long-term aging of advanced microelectronic packages. Journal of Electronic Materials, 2001, 30, 379-385.	2.2	58
206	Reflow soldering and isothermal solid-state aging of Sn-Ag eutectic solder on Au/Ni surface finish. Journal of Electronic Materials, 2001, 30, 1152-1156.	2.2	66
207	Formation and resettlement of (AuxNi1â^'x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish. Journal of Electronic Materials, 2000, 29, 1175-1181.	2.2	118
208	Long-term aging study on the solid-state reaction between 58Bi42Sn solder and Ni substrate. Journal of Electronic Materials, 2000, 29, 1200-1206.	2.2	51
209	Optimizing the wireâ€bonding parameters for second bonds in ball grid array packages. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2000, 23, 625-632.	1.1	0
210	Schottky enhancement of contacts to n-GaAs via the exchange mechanism using NiAl[sub x]Ga[sub 1â^'x] as a metallization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 432.	1.6	2
211	Reaction kinetics of solder-balls with pads in BGA packages during reflow soldering. Journal of Electronic Materials, 1999, 28, 1231-1237.	2.2	79
212	Interfacial reactions between Ni substrate and the component Bi in solders. Journal of Electronic Materials, 1999, 28, 57-62.	2.2	30
213	Binary compounds in the Ge–Ti system. Journal of Alloys and Compounds, 1999, 282, L9-L12.	5.5	10
214	Formation and Absence of Intermetallic Compounds during Solid-State Reactions in the Niâ^'Bi System. Chemistry of Materials, 1999, 11, 292-297.	6.7	33
215	Phase Relation in the Titanium-Rich Region of the Ge–Si–Ti Ternary System. Materials Transactions, JIM, 1999, 40, 307-313.	0.9	5
216	Phase equilibria of the Si-Ge-Ti system relevant to the reactions between SiGe alloys and Ti. Journal of Electronic Materials, 1998, 27, 842-847.	2.2	3

#	Article	IF	CITATIONS
217	Reactions of solid copper with pure liquid tin and liquid tin saturated with copper. Scripta Materialia, 1997, 37, 393-398.	5.2	59
218	Microstructures developed in solid-liquid reactions: using Cu-Sn reaction, Ni-Bi reaction, and Cu-In reaction as examples. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 238, 196-201.	5.6	70
219	A mechanism for reactive diffusion between Si single crystal and NbC powder compact. Journal of Materials Research, 1996, 11, 850-854.	2.6	10
220	Synthesis of in situ composites through solid-state reactions: thermodynamic, mass-balance and kinetic considerations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 195, 29-37.	5.6	19
221	Diffusional behavior in B2 intermetallic compounds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 965-979.	5.6	20
222	A generalized quasi-chemical model for ordered multi-component, multi-sublattice intermetallic compounds with anti-structure defects. Intermetallics, 1995, 3, 233-242.	3.9	18
223	Site preference of substitutional additions to triple-defect B2 intermetallic compounds. Intermetallics, 1994, 2, 235-247.	3.9	44
224	Application of thermodynamics, phase equilibria and kinetics to in-situ composite synthesis via ternary solid-state displacement reactions. Pure and Applied Chemistry, 1994, 66, 1797-1806.	1.9	15
225	Phase equilibria of the cu-in system I: Experimental investigation. Journal of Phase Equilibria and Diffusion, 1993, 14, 14-21.	0.3	65
226	Phase equilibria of the cu-in system II: Thermodynamic assessment and calculation of phase diagram. Journal of Phase Equilibria and Diffusion, 1993, 14, 22-30.	0.3	32
227	On the composition dependencies of self-diffusion coefficients in B2 intermetallic compounds. Intermetallics, 1993, 1, 237-250.	3.9	110
228	On the optimization of solution model parameter values of phases and the calculation of phase diagrams. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1993, 17, 47-56.	1.6	6
229	A theoretical analysis for the formation of periodic layered structure in ternary diffusion couples involving a displacement type of reactions. Acta Metallurgica Et Materialia, 1993, 41, 3463-3472.	1.8	42
230	Model for micelle formation in copolymer/homopolymer blends. Journal of Chemical Physics, 1990, 93, 8284-8293.	3.0	13
231	Liquid/solid and solid/solid reactions between SnAgCu lead-free solders and Ni surface finish. , 0, , .		4
232	The effect of Ni on the interfacial reaction between Sn-Ag solder and Cu metallization. , 0, , .		7
233	Electromigration in tin thin film. , 0, , .		1
234	. Materials interaction between Pb-free Sn-9Zn solder and Au pad in advanced electronic packages. , 0, , .		1

Materials interaction between Pb-free Sn-9Zn solder and Au pad in advanced electronic packages. , 0, , . 234

#	Article	IF	CITATIONS
235	New failure mode induced by electric current in flip chip solder joint. , 0, , .		0
236	Volume effect on the soldering reaction between SnAgCu solders and Ni. , 0, , .		17
237	Grain Boundary Diffusion of Ni through Au-Doped Ni3Sn2 Intermetallic Compound for Technological Applications. Journal of Electronic Materials, 0, , 1.	2.2	1