List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8063540/publications.pdf

Version: 2024-02-01

Ιμεία Ραδοιματο

#	Article	IF	CITATIONS
1	Decorating carbon nanotubes with metal or semiconductor nanoparticles. Journal of Materials Chemistry, 2007, 17, 2679.	6.7	622
2	Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angewandte Chemie - International Edition, 2004, 43, 6165-6169.	13.8	474
3	Gold nanoparticles-based protease assay. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3978-3982.	7.1	274
4	The role of sulfur functionalities in activating and directing olefins in cycloaddition reactions. Tetrahedron, 1988, 44, 6755-6794.	1.9	150
5	Carboxylateâ^'Imidazole Cooperativity in Dipeptide-Functionalized Gold Nanoparticles with Esterase-like Activity. Journal of the American Chemical Society, 2005, 127, 1616-1617.	13.7	139
6	The (Z)- and (E)-1,2-bis(phenylsulfonyl)ethylenes as synthetic equivalents to acetylene as dienophile. Journal of Organic Chemistry, 1984, 49, 596-604.	3.2	137
7	Functional gold nanoparticles for recognition and catalysis. Journal of Materials Chemistry, 2004, 14, 3481.	6.7	124
8	Dispersable Carbon Nanotube/Gold Nanohybrids: Evidence for Strong Electronic Interactions. Small, 2005, 1, 527-530.	10.0	100
9	Substrate Modulation of the Activity of an Artificial Nanoesterase Made of Peptide-Functionalized Gold Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 400-404.	13.8	96
10	N-Methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester. Chemical Communications, 2000, , 2253-2254.	4.1	95
11	Quantitative Correlation of Solvent Polarity with the α-/310-Helix Equilibrium: A Heptapeptide Behaves as a Solvent-Driven Molecular Spring. Angewandte Chemie - International Edition, 2003, 42, 3388-3392.	13.8	91
12	Active and Stable Embedded Au@CeO ₂ Catalysts for Preferential Oxidation of CO. Chemistry of Materials, 2010, 22, 4335-4345.	6.7	87
13	Conversion of Bis(trichloromethyl) Carbonate to Phosgene and Reactivity of Triphosgene, Diphosgene, and Phosgene with Methanol1. Journal of Organic Chemistry, 2000, 65, 8224-8228.	3.2	85
14	Effect of Core Size on the Partition of Organic Solutes in the Monolayer of Water-Soluble Nanoparticles:Â An ESR Investigation. Journal of the American Chemical Society, 2005, 127, 16384-16385.	13.7	81
15	Synthesis, characterization and properties of water-soluble gold nanoparticles with tunable core size. Journal of Materials Chemistry, 2003, 13, 2471-2478.	6.7	77
16	EPR Study of Dialkyl Nitroxides as Probes to Investigate the Exchange of Solutes between the Ligand Shell of Monolayers of Protected Gold Nanoparticles and Aqueous Solutions. Journal of the American Chemical Society, 2004, 126, 9326-9329.	13.7	75
17	Water-Soluble Gold Nanoparticles Protected by Fluorinated Amphiphilic Thiolates. Journal of the American Chemical Society, 2008, 130, 15678-15682.	13.7	75
18	Reversible Aggregation/Deaggregation of Gold Nanoparticles Induced by a Cleavable Dithiol Linker. Langmuir, 2005, 21, 5537-5541.	3.5	65

#	Article	IF	CITATIONS
19	Nanozymes: Functional Nanoparticle-based Catalysts. Supramolecular Chemistry, 2005, 17, 163-171.	1.2	65
20	Metallodendrimers as Transphosphorylation Catalysts. Journal of the American Chemical Society, 2007, 129, 6982-6983.	13.7	65
21	Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. European Biophysics Journal, 2017, 46, 749-771.	2.2	64
22	Formation of Patches on 3D SAMs Driven by Thiols with Immiscible Chains Observed by ESR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 3060-3064.	13.8	61
23	SN2 and AdN-E Mechanisms in Bimolecular Nucleophilic Substitutions at Vinyl Carbon. The Relevance of the LUMO Symmetry of the Electrophile. Journal of the American Chemical Society, 1995, 117, 2297-2300.	13.7	56
24	Monolayer Protected Gold Nanoparticles on Ceria for an Efficient CO Oxidation Catalyst. Chemistry of Materials, 2007, 19, 650-651.	6.7	56
25	Hydrolytic Metallo-Nanozymes: From Micelles and Vesicles to Gold Nanoparticles. Molecules, 2016, 21, 1014.	3.8	56
26	Enantiopure thiosulfonium salts in asymmetric synthesis. Face selectivity in electrophilic additions to unfunctionalised olefins. Journal of the Chemical Society Chemical Communications, 1994, , 1565.	2.0	50
27	Synthesis of a Stable Helical Peptide and Grafting on Gold Nanoparticles. Langmuir, 2003, 19, 2521-2524.	3.5	50
28	X-ray Structures and Anionotropic Rearrangements of Di-tert-butyl-Substituted Thiiranium and Thiirenium Ions. A Structureâ^'Reactivity Relationship. Journal of Organic Chemistry, 2000, 65, 3367-3370.	3.2	48
29	ESR spectroscopy as a tool to investigate the properties of self-assembled monolayers protecting gold nanoparticles. Nanoscale, 2010, 2, 668.	5.6	48
30	Patchy and Janus Nanoparticles by Self-Organization of Mixtures of Fluorinated and Hydrogenated Alkanethiolates on the Surface of a Gold Core. ACS Nano, 2016, 10, 9316-9325.	14.6	48
31	An authentic case of in-plane nucleophilic vinylic substitution: the anionotropic rearrangement of di-tert-butylthiirenium ions into thietium ions. Journal of the American Chemical Society, 1993, 115, 4527-4531.	13.7	46
32	Nucleophilic Reactions at the Sulfur of Thiiranium and Thiirenium Ions. New Insight in the Electrophilic Additions to Alkenes and Alkynes. Evidence for an Episulfurane Intermediate. Journal of the American Chemical Society, 1999, 121, 3944-3950.	13.7	46
33	Solvent Polarity Controls the Helical Conformation of Short Peptides Rich in Cα-Tetrasubstituted Amino Acids. Chemistry - A European Journal, 2007, 13, 407-416.	3.3	43
34	Consequences of fixing three parallel coplanar double bonds in close proximity with different geometries. Synthesis and spectral parameters of syn- and anti-sesquinorbornatriene. Journal of the American Chemical Society, 1986, 108, 3453-3460.	13.7	40
35	Complexes of Platinum(II) Containing Neutral and Deprotonated 9-Methyladenine. Synthesis, X-ray Structures, and NMR Studies on the Cyclic Trimercis-[L2Pt{9-MeAd(â^'H)}]3(NO3)3and the Dinuclearcis-[L2Pt(ONO2){9-MeAd(â^'H)}PtL2](NO3)2(L = PMePh2). Inorganic Chemistry, 2003, 42, 7861-7871.	4.0	40
36	Self-Organization of Mixtures of Fluorocarbon and Hydrocarbon Amphiphilic Thiolates on the Surface of Gold Nanoparticles. ACS Nano, 2012, 6, 7243-7253.	14.6	40

#	Article	IF	CITATIONS
37	Role of Secondary Structure in the Asymmetric Acylation Reaction Catalyzed by Peptides Based on Chiral Cα-Tetrasubstituted α-Amino Acids. Journal of Organic Chemistry, 2004, 69, 3849-3856.	3.2	39
38	Morphology of mixed-monolayers protecting metal nanoparticles. Journal of Materials Chemistry, 2010, 20, 1403-1412.	6.7	38
39	Gold nanoparticles protected by fluorinated ligands for 19F MRI. Chemical Communications, 2013, 49, 8794.	4.1	36
40	Anionotropic rearrangements of tert-butyl- and adamantylthiiranium ions into thietanium ions. A novel case of selectivity. Journal of the American Chemical Society, 1991, 113, 6600-6607.	13.7	34
41	Cooperative nanosystems. Journal of Peptide Science, 2008, 14, 174-183.	1.4	32
42	Bis(arylsulphonyl)acetylenes. Tetrahedron Letters, 1991, 32, 2177-2178.	1.4	31
43	Multivalent recognition of bis- and tris-Zn-porphyrins by N-methylimidazole functionalized gold nanoparticles. Chemical Communications, 2003, , 1004-1005.	4.1	29
44	1,1-Bis(benzenesulfonyl)ethylene: A synthetic equivalent of ethylene 1,2-dipole. Tetrahedron Letters, 1984, 25, 3643-3646.	1.4	28
45	Novel type of selectivity in anionotropic rearrangements. Journal of the American Chemical Society, 1988, 110, 6900-6901.	13.7	26
46	Duality of Mechanism in the Tetramethylfluoroformamidinium Hexafluorophosphate-Mediated Synthesis ofN-Benzyloxycarbonylamino Acid Fluorides. Journal of Organic Chemistry, 2001, 66, 5905-5910.	3.2	25
47	NMR enantiodifferentiation of thiiranium cations by chiral hexacoordinated phosphate anions. Tetrahedron Letters, 2002, 43, 5517-5520.	1.4	25
48	Physico-Chemical Characteristics of Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 81-152.	1.3	25
49	Gold nanoparticles protected by fluorinated ligands: Syntheses, properties and applications. Journal of Fluorine Chemistry, 2015, 177, 2-10.	1.7	24
50	Reactivity of phenyl(tolylsulfonyl)acetylene towards dienes and homo-dienes: cycloadditions versus fragmentation-addition reactions. Tetrahedron Letters, 1988, 29, 831-834.	1.4	23
51	Title is missing!. Angewandte Chemie, 2003, 115, 3510-3514.	2.0	23
52	Differential reactivity of the inner and outer positions of Au ₂₅ (SCH ₂ CH ₂ Ph) ₁₈ dimeric staples under place exchange conditions. Chemical Communications, 2015, 51, 3204-3207.	4.1	23
53	Gold nanoparticles as drug carriers: a contribution to the quest for basic principles for monolayer design. Journal of Materials Chemistry B, 2015, 3, 432-439.	5.8	23
54	Functionalized Gold Nanoparticles as Contrast Agents for Proton and Dual Proton/Fluorine MRI. Nanomaterials, 2019, 9, 879.	4.1	21

#	Article	IF	CITATIONS
55	An artificial ionophore based on a polyhydroxylated steroid dimer. Chemical Communications, 2002, , 3066-3067.	4.1	20
56	Thermal and photochemical addition of phenyl(arylsulphonyl)acetylenes to alkenes. Journal of the Chemical Society Chemical Communications, 1985, , 1597.	2.0	19
57	Routes to the preparation of mixed monolayers of fluorinated and hydrogenated alkanethiolates grafted on the surface of gold nanoparticles. Faraday Discussions, 2016, 191, 527-543.	3.2	19
58	Straightforward Synthesis of Fluorinated Amphiphilic Thiols. European Journal of Organic Chemistry, 2008, 2008, 3308-3313.	2.4	18
59	Mixed Fluorinated/Hydrogenated Selfâ€Assembled Monolayerâ€Protected Gold Nanoparticles: In Silico and In Vitro Behavior. Small, 2019, 15, e1900323.	10.0	18
60	Cycloaddition Behavior of 2-Substituted Norbornadienes towards 4-Phenyl-4H-1,2,4-triazole-3,5-dione (PTAD): Homo Diels-Alder Reactivity versus Insertion, Rearrangement, and [2 + 2] Cycloaddition. Chemische Berichte, 1987, 120, 531-535.	0.2	17
61	Fluorinated and Charged Hydrogenated Alkanethiolates Grafted on Gold: Expanding the Diversity of Mixed-Monolayer Nanoparticles for Biological Applications. Bioconjugate Chemistry, 2017, 28, 43-52.	3.6	17
62	Different Reactivity Modes of Cis and Trans Di-tert-butylthiiranium Tetrafluoroborates1with Water. A New Insight in the Electrophilic Additions toZandEDi-tert-butylethylenesâ€. Journal of Organic Chemistry, 1997, 62, 7018-7020.	3.2	15
63	Cycloaddition of 4â€Phenylâ€4 <i>H</i> â€1,2,4â€triazoleâ€3,5â€dione (PTAD) to 7â€Alkylideneâ€2,3â€benzon Chemische Berichte, 1989, 122, 133-143.	orbornadie	rnes, 14
64	Thiiranium and Thiirenium lons Chemistry and Stereochemistry. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 265-282.	1.6	14
65	3,4-Epoxy-5-hydroxycyclopentene via Titanium(IV)-catalyzed photooxygenation and its pyrolysis to 2,4-pentadienoic acid Tetrahedron Letters, 1987, 28, 311-314.	1.4	13
66	The phenylsulfenium cation: Electronic structure and gas-phase reactivity. Tetrahedron Letters, 1999, 40, 6073-6076.	1.4	13
67	Different Approaching Directions of σ and π Nucleophiles to the Sulfur Atom of Thiiranium and Thiirenium Ions. Chemistry - A European Journal, 2000, 6, 589-590.	3.3	13
68	Gold nanoparticles protected with triethyleneglycol-Functionalized thiolates: acid-Induced clustering of the aggregates and solvent dependent optical properties. Journal of Supramolecular Chemistry, 2002, 2, 305-310.	0.4	13
69	C2-symmetrical sterol–polyether conjugates as highly efficient synthetic ionophores. Tetrahedron Letters, 2003, 44, 6121-6124.	1.4	13
70	Nucleophilic reactivity of sulfonyl oxygen. Detection and isolation of Î ³ -sultinium ions. Journal of the Chemical Society Chemical Communications, 1992, , 293-294.	2.0	12
71	Mechanistic investigation on 2-aza-spiro[4,5]decan-3-one formation from 1-(aminomethyl)cyclohexylacetic acid (gabapentin). Tetrahedron, 2008, 64, 6739-6743.	1.9	12
72	Multivalent presentation of a hydrolytically stable GM3 lactone mimetic as modulator of melanoma cells motility and adhesion. Bioorganic and Medicinal Chemistry, 2013, 21, 2756-2763.	3.0	12

#	Article	IF	CITATIONS
73	1,2-bis(ARYLSULFONYL)ALKENES. A REVIEW. Organic Preparations and Procedures International, 1991, 23, 571-592.	1.3	11
74	anti-1,4,5,8-Tetrahydro-1,4;5,8-dimethanonaphthalene (sesquinorbornadiene), a molecule with three parallel, coplanar, and interacting double bonds. Journal of the Chemical Society Chemical Communications, 1985, , 418.	2.0	8
75	Unusual Rearrangement Products in the Cycloaddition of 4â€Phenylâ€4 <i>H</i> â€1,2,4â€ŧriazoleâ€3,5â€dione (PTAD) to Substituted 7â€Methylenenorbornenes. Chemische Berichte, 1986, 119, 2932-2941.	0.2	8
76	Wet-Chemical Synthesis of Porous Multifaceted Platinum Nanoparticles for Oxygen Reduction and Methanol Oxidation Reactions. ACS Applied Nano Materials, 0, , .	5.0	7
77	Geometry and Conformation of Thietanium Ions from Diffraction Data andAb Initio Calculations. Helvetica Chimica Acta, 2001, 84, 860-866.	1.6	6
78	Biological and Biomimetic Applications of Nanoparticles. Nanostructure Science and Technology, 2004, , 251-282.	0.1	6
79	Sulfur Electrophiles as Mechanistic Probe. New Insight in the Electrophilic Additions. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 153, 235-245.	1.6	5
80	Crystal structures of isomeric bis(benzenesulfonyl)ethylenes, C14H12O4S2. Zeitschrift Für Kristallographie, 1985, 170, 267-274.	1,1	4
81	Thiolate end-group regulates ligand arrangement, hydration and affinity for small compounds in monolayer-protected gold nanoparticles. Journal of Colloid and Interface Science, 2022, 607, 1373-1381.	9.4	4
82	"RS+―as a Coupling Reagent for Phosphorylation and Carboxylic Acid Activation. European Journal of Organic Chemistry, 2001, 2001, 3457-3460.	2.4	3
83	Self-sorting in mixed fluorinated/hydrogenated assemblies. Supramolecular Chemistry, 2017, 29, 808-822.	1.2	3
84	Gold nanoparticles protected by mixed hydrogenated/fluorinated monolayers: controlling and exploring the surface features. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	3
85	Label-Free, Rapid and Facile Gold-Nanoparticles-Based Assay as a Potential Spectroscopic Tool for Trastuzumab Quantification. Nanomaterials, 2021, 11, 3181.	4.1	2
86	Particles at interfaces: general discussion. Faraday Discussions, 2016, 191, 407-434.	3.2	1
87	Nanozymes: Functional Nanoparticle-Based Catalysts. ChemInform, 2006, 37, no.	0.0	0