
Francisco Molina-Holgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8061256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endocannabinoid signaling in oligodendroglia. Clia, 2023, 71, 91-102.	4.9	7
2	Transcription Profile and Pathway Analysis of the Endocannabinoid Receptor Inverse Agonist AM630 in the Core and Infiltrative Boundary of Human Glioblastoma Cells. Molecules, 2022, 27, 2049.	3.8	3
3	Effect of endocannabinoid signalling on cell fate: life, death, differentiation and proliferation of brain cells. British Journal of Pharmacology, 2019, 176, 1361-1369.	5.4	32
4	Cannabinoids and their actions: An update. British Journal of Pharmacology, 2019, 176, 1359-1360.	5.4	1
5	Spicing Up Pharmacology: A Review of Synthetic Cannabinoids From Structure to Adverse Events. Advances in Pharmacology, 2017, 80, 135-168.	2.0	40
6	Drugs of abuse – its not all bad news. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 64, 155-156.	4.8	1
7	Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia. Journal of Neuroinflammation, 2015, 12, 15.	7.2	77
8	A Basal Tone of 2-Arachidonoylglycerol Contributes to Early Oligodendrocyte Progenitor Proliferation by Activating Phosphatidylinositol 3-Kinase (PI3K)/AKT and the Mammalian Target of Rapamycin (MTOR) Pathways. Journal of NeuroImmune Pharmacology, 2015, 10, 309-317.	4.1	36
9	Spinal cord injury induces a long-lasting upregulation of interleukin-1β in astrocytes around the central canal. Neuroscience, 2015, 284, 283-289.	2.3	13
10	Neuroimmmune interactions of cannabinoids in neurogenesis: focus on interleukin-1β (IL-1β) signalling. Biochemical Society Transactions, 2013, 41, 1577-1582.	3.4	23
11	Cannabinoid receptor agonists modulate oligodendrocyte differentiation by activating PI3K/Akt and the mammalian target of rapamycin (mTOR) pathways. British Journal of Pharmacology, 2011, 163, 1520-1532.	5.4	95
12	Synthesis, physical–chemical characterisation and biological evaluation of novel 2-amido-3-hydroxypyridin-4(1H)-ones: Iron chelators with the potential for treating Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2011, 19, 1285-1297.	3.0	45
13	The constitutive production of the endocannabinoid 2â€arachidonoylglycerol participates in oligodendrocyte differentiation. Glia, 2010, 58, 1913-1927.	4.9	76
14	Mending the broken brain: neuroimmune interactions in neurogenesis. Journal of Neurochemistry, 2010, 114, 1277-1290.	3.9	81
15	CB ₂ cannabinoid receptors as an emerging target for demyelinating diseases: from neuroimmune interactions to cell replacement strategies. British Journal of Pharmacology, 2008, 153, 216-225.	5.4	66
16	Neuroprotective actions of deferiprone in cultured cortical neurones and SHSYâ€5Y cells. Journal of Neurochemistry, 2008, 105, 2466-2476.	3.9	72
17	Iron chelation as a potential therapy for neurodegenerative disease. Biochemical Society Transactions, 2008, 36, 1304-1308.	3.4	63
18	The endocannabinoid system modulates a transient TNF pathway that induces neural stem cell proliferation. Molecular and Cellular Neurosciences, 2008, 38, 374-380.	2.2	46

#	Article	IF	CITATIONS
19	A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Molecular and Cellular Neurosciences, 2008, 38, 526-536.	2.2	158
20	Inflammatory Mediators in the Frontal Lobe of Patients with Mixed and Vascular Dementia. Dementia and Geriatric Cognitive Disorders, 2008, 25, 278-286.	1.5	30
21	Tandem Repeat Peptide Strategy for the Design of Neurotrophic Factor Mimetics. CNS and Neurological Disorders - Drug Targets, 2008, 7, 110-119.	1.4	14
22	CB2 cannabinoid receptors promote mouse neural stem cell proliferation. European Journal of Neuroscience, 2007, 25, 629-634.	2.6	126
23	Cannabinoids modulate Olig2 and polysialylated neural cell adhesion molecule expression in the subventricular zone of postâ€natal rats through cannabinoid receptor 1 and cannabinoid receptor 2. European Journal of Neuroscience, 2007, 26, 1548-1559.	2.6	78
24	Leptin induces interleukin-1β release from rat microglial cells through a caspase 1 independent mechanism. Journal of Neurochemistry, 2007, 102, 826-833.	3.9	88
25	Metals ions and neurodegeneration. BioMetals, 2007, 20, 639-654.	4.1	186
26	Endotoxin preconditioning protects neurones from in vitro ischemia: Role of endogenous IL-1β and TNF-α. Journal of Neuroimmunology, 2006, 173, 108-116.	2.3	32
27	The Role of Cannabinoid System on Immune Modulation: Therapeutic Implications on CNS Inflammation. Mini-Reviews in Medicinal Chemistry, 2005, 5, 671-675.	2.4	33
28	Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson's disease. Neurobiology of Disease, 2005, 19, 96-107.	4.4	339
29	Neuroprotective effects of the synthetic cannabinoid HU-210 in primary cortical neurons are mediated by phosphatidylinositol 3-kinase/AKT signaling. Molecular and Cellular Neurosciences, 2005, 28, 189-194.	2.2	67
30	Endogenous Interleukin-1 Receptor Antagonist Mediates Anti-Inflammatory and Neuroprotective Actions of Cannabinoids in Neurons and Glia. Journal of Neuroscience, 2003, 23, 6470-6474.	3.6	185
31	Cannabinoids Promote Oligodendrocyte Progenitor Survival: Involvement of Cannabinoid Receptors and Phosphatidylinositol-3 Kinase/Akt Signaling. Journal of Neuroscience, 2002, 22, 9742-9753.	3.6	390
32	Role of CB ₁ and CB ₂ receptors in the inhibitory effects of cannabinoids on lipopolysaccharideâ€induced nitric oxide release in astrocyte cultures. Journal of Neuroscience Research, 2002, 67, 829-836.	2.9	133
33	Actions ofexogenous andendogenous IL-10 on glial responses to bacterial LPS/cytokines. Glia, 2001, 33, 97-106.	4.9	49
34	Induction of COX-2 and PGE2 biosynthesis by IL-1Î ² is mediated by PKC and mitogen-activated protein kinases in murine astrocytes. British Journal of Pharmacology, 2000, 131, 152-159.	5.4	180
35	Involvement of interleukin-1 in glial responses to lipopolysaccharide: endogenous versus exogenous interleukin-1 actions. Journal of Neuroimmunology, 2000, 111, 1-9.	2.3	20
36	Effects of Cannabinoids on the Immune System and Central Nervous System. BioDrugs, 1999, 12, 317-326.	4.6	17

#	Article	IF	CITATIONS
37	The endogenous cannabinoid anandamide potentiates interleukinâ€6 production by astrocytes infected with Theiler's murine encephalomyelitis virus by a receptorâ€mediated pathway. FEBS Letters, 1998, 433, 139-142.	2.8	100
38	Cytokines in Astroglial Cells: Functions and Mechanisms of Action. , 1998, , 195-212.		0
39	Anandamide suppresses nitric oxide and TNF-α responses to Theiler's virus or endotoxin in astrocytes. NeuroReport, 1997, 8, 1929-1933.	1.2	105
40	Maternal Exposure to Δ 9 -Tetrahydrocannabinol (Δ 9 -THC) Alters Indolamine Levels and Turnover in Adult Male and Female Rat Brain Regions. Brain Research Bulletin, 1997, 43, 173-178.	3.0	32
41	Effect of maternal Δ9-tetrahydrocannabinol on developing serotonergic system. European Journal of Pharmacology, 1996, 316, 39-42.	3.5	63
42	Endotoxin administration induced differential neurochemical activation of the rat brain stem nuclei. Brain Research Bulletin, 1996, 40, 151-156.	3.0	40
43	Evidence for cyclooxygenase activation by nitric oxide in astrocytes. Glia, 1995, 15, 167-172.	4.9	56
44	Effect of Δ9-tetrahydrocannabinol on short-term memory in the rat. Physiology and Behavior, 1995, 57, 177-179.	2.1	41
45	The effect of perinatal exposure to estrogens on the sexually dimorphic response to novelty. Physiology and Behavior, 1994, 55, 371-373.	2.1	73
46	Distribution of indoleamines and [3H]paroxetine binding in rat brain regions following acute or perinatal ?9-tetrahydrocannabinol treatments. Neurochemical Research, 1993, 18, 1183-1191.	3.3	47