
Gilad Haran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8061137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast dynamics shape the function of the <scp>AAA</scp> + machine <scp>ClpB</scp> : lessons from singleâ€molecule <scp>FRET</scp> spectroscopy. FEBS Journal, 2023, 290, 3496-3511.	4.7	6
2	Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit. Accounts of Chemical Research, 2022, 55, 1659-1668.	15.6	13
3	Control over size, shape, and photonics of self-assembled organic nanocrystals. Beilstein Journal of Organic Chemistry, 2021, 17, 42-51.	2.2	3
4	Improving the quality factors of plasmonic silver cavities for strong coupling with quantum emitters. Journal of Chemical Physics, 2021, 154, 014703.	3.0	4
5	Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nature Communications, 2021, 12, 1310.	12.8	44
6	Understanding Microsecond Dynamics of Protein Machines. Biophysical Journal, 2021, 120, 113a-114a.	0.5	0
7	FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. ELife, 2021, 10, .	6.0	152
8	Substrates Modulate Charge-Reorganization Allosteric Effects in Protein–Protein Association. Journal of Physical Chemistry Letters, 2021, 12, 2805-2808.	4.6	12
9	Entropic Inhibition: How the Activity of a AAA+ Machine Is Modulated by Its Substrate-Binding Domain. ACS Chemical Biology, 2021, 16, 775-785.	3.4	9
10	Ultrafast pore-loop dynamics in a AAA+ machine point to a Brownian-ratchet mechanism for protein translocation. Science Advances, 2021, 7, eabg4674.	10.3	21
11	CCR7 signalosomes are preassembled on tips of lymphocyte microvilli in proximity to LFA-1. Biophysical Journal, 2021, 120, 4002-4012.	0.5	6
12	Correlated diffusion in lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
13	Long-Range Charge Reorganization as an Allosteric Control Signal in Proteins. Journal of the American Chemical Society, 2020, 142, 20456-20462.	13.7	27
14	How fast are the motions of tertiary-structure elements in proteins?. Journal of Chemical Physics, 2020, 153, 130902.	3.0	10
15	ERM-Dependent Assembly of T Cell Receptor Signaling and Co-stimulatory Molecules on Microvilli prior to Activation. Cell Reports, 2020, 30, 3434-3447.e6.	6.4	58
16	Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nature Communications, 2020, 11, 487.	12.8	47
17	Measuring protein stability in the GroEL chaperonin cage reveals massive destabilization. ELife, 2020, 9,	6.0	10
18	Single-molecule FRET methods to study the dynamics of proteins at work. Current Opinion in Biomedical Engineering, 2019, 12, 8-17.	3.4	93

#	Article	IF	CITATIONS
19	The Effect of the Phospholipid Bilayer Environment on Cholesterol Crystal Polymorphism. ChemPlusChem, 2019, 84, 317-317.	2.8	1
20	Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nature Communications, 2019, 10, 1438.	12.8	46
21	Quantum dot plasmonics: from weak to strong coupling. Nanophotonics, 2019, 8, 559-575.	6.0	112
22	The Effect of the Phospholipid Bilayer Environment on Cholesterol Crystal Polymorphism. ChemPlusChem, 2019, 84, 338-344.	2.8	12
23	Deciphering hierarchical features in the energy landscape of adenylate kinase folding/unfolding. Journal of Chemical Physics, 2018, 148, 123325.	3.0	14
24	Two states or not two states: Single-molecule folding studies of protein L. Journal of Chemical Physics, 2018, 148, 123303.	3.0	27
25	Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3243-3248.	7.1	87
26	Lipid diffusion in the distal and proximal leaflets of supported lipid bilayer membranes studied by single particle tracking. Journal of Chemical Physics, 2018, 148, 123333.	3.0	26
27	Effect of ligand binding on a protein with a complex folding landscape. Physical Chemistry Chemical Physics, 2018, 20, 3054-3062.	2.8	52
28	Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews, 2018, 118, 5539-5580.	47.7	80
29	Manipulating the Folding Landscape of a Multidomain Protein. Journal of Physical Chemistry B, 2018, 122, 11030-11038.	2.6	24
30	In vitro suppression of two different stop codons. Biotechnology and Bioengineering, 2017, 114, 1065-1073.	3.3	30
31	Photon-by-Photon Hidden Markov Model Analysis for Microsecond Single-Molecule FRET Kinetics. Journal of Physical Chemistry B, 2016, 120, 13065-13075.	2.6	81
32	Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5916-E5924.	7.1	175
33	Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nature Communications, 2016, 7, ncomms11823.	12.8	371
34	Probing the Molecular Origin of Native-State Flexibility in Repeat Proteins. Journal of the American Chemical Society, 2015, 137, 10367-10373.	13.7	16
35	Gradual Folding of an Off-Pathway Molten Globule Detected at the Single-Molecule Level. Journal of Molecular Biology, 2015, 427, 3148-3157.	4.2	17
36	Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay. Nature Communications, 2015, 6, 8624.	12.8	16

#	Article	IF	CITATIONS
37	The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 21, 26-39.	11.6	86
38	Modular Plasmonic Antennas Built of Ultrathin Silica-Shell Silver-Core Nanoparticles. Langmuir, 2014, 30, 7919-7927.	3.5	22
39	Maximal Raman Optical Activity in Hybrid Single Molecule-Plasmonic Nanostructures with Multiple Dipolar Resonances. Nano Letters, 2013, 13, 1285-1290.	9.1	41
40	Can a rare form of myasthenia gravis shed additional light on disease mechanisms?. Clinical Neurology and Neurosurgery, 2013, 115, 562-566.	1.4	13
41	Optical activity in single-molecule surface-enhanced Raman scattering: Role of symmetry. MRS Bulletin, 2013, 38, 642-647.	3.5	20
42	Single-Particle Tracking Reveals Switching of the HIV Fusion Peptide between Two Diffusive Modes in Membranes. Journal of Physical Chemistry B, 2013, 117, 13308-13321.	2.6	27
43	Correlating Electron Tomography and Plasmon Spectroscopy of Single Noble Metal Core–Shell Nanoparticles. Nano Letters, 2012, 12, 145-150.	9.1	47
44	The dynamic disulphide relay of quiescin sulphydryl oxidase. Nature, 2012, 488, 414-418.	27.8	70
45	Detection and Quantification through a Lipid Membrane Using the Molecularly Controlled Semiconductor Resistor. Langmuir, 2012, 28, 1020-1028.	3.5	12
46	Small-Angle X-ray Scattering and Single-Molecule FRET Spectroscopy Produce Highly Divergent Views of the Low-Denaturant Unfolded State. Journal of Molecular Biology, 2012, 418, 226-236.	4.2	92
47	Allosteric inhibition of individual enzyme molecules trapped in lipid vesicles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1437-E1443.	7.1	70
48	How, when and why proteins collapse: the relation to folding. Current Opinion in Structural Biology, 2012, 22, 14-20.	5.7	144
49	Single Molecule SERS Spectral Blinking and Vibronic Coupling. Journal of Physical Chemistry C, 2011, 115, 4540-4545.	3.1	64
50	Tunable Localized Plasmon Transducers Prepared by Thermal Dewetting of Percolated Evaporated Gold Films. Journal of Physical Chemistry C, 2011, 115, 24642-24652.	3.1	114
51	Trimeric Plasmonic Molecules: The Role of Symmetry. Nano Letters, 2011, 11, 2440-2445.	9.1	154
52	Effect of Symmetry Breaking on the Mode Structure of Trimeric Plasmonic Molecules. Journal of Physical Chemistry C, 2011, 115, 19488-19495.	3.1	51
53	Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. Nature Communications, 2011, 2, 493.	12.8	162
54	Role of Solvation Effects in Protein Denaturation: From Thermodynamics to Single Molecules and Back. Annual Review of Physical Chemistry, 2011, 62, 257-277.	10.8	249

#	Article	IF	CITATIONS
55	Fluorescence Correlation Spectroscopy of Fast Chain Dynamics within Denatured Protein L. ChemPhysChem, 2011, 12, 696-703.	2.1	23
56	Single-Molecule Raman Spectroscopy: A Probe of Surface Dynamics and Plasmonic Fields. Accounts of Chemical Research, 2010, 43, 1135-1143.	15.6	107
57	Targeting Nonâ€Fluorescent Molecules by Nonlinear Optical Imaging. ChemPhysChem, 2010, 11, 1619-1622.	2.1	Ο
58	Out-of-equilibrium conformational cycling of GroEL under saturating ATP concentrations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6270-6274.	7.1	26
59	To fold or expand—a charged question. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14519-14520.	7.1	11
60	Single-Molecule Raman Spectroscopy: A Probe of Charge Transfer and Plasmonic Fields. , 2010, , .		0
61	Protein Folding, Protein Collapse, and Tanford's Transfer Model: Lessons from Single-Molecule FRET. Journal of the American Chemical Society, 2009, 131, 2942-2947.	13.7	95
62	Common Crowding Agents Have Only a Small Effect on Protein-Protein Interactions. Biophysical Journal, 2009, 97, 875-885.	0.5	119
63	Collapse transition in proteins. Physical Chemistry Chemical Physics, 2009, 11, 83-93.	2.8	125
64	Raman Spectroelectrochemistry of Molecules within Individual Electromagnetic Hot Spots. Journal of the American Chemical Society, 2009, 131, 14390-14398.	13.7	87
65	Multiple-Particle Nanoantennas for Enormous Enhancement and Polarization Control of Light Emission. ACS Nano, 2009, 3, 637-642.	14.6	137
66	Biophysical Characterization of the Unstructured Cytoplasmic Domain of the Human Neuronal Adhesion Protein Neuroligin 3. Biophysical Journal, 2008, 95, 1928-1944.	0.5	45
67	Concerted Release of Substrate Domains from GroEL by ATP Is Demonstrated with FRET. Journal of Molecular Biology, 2008, 380, 717-725.	4.2	17
68	Non-random-coil Behavior as a Consequence of Extensive PPII Structure in the Denatured State. Journal of Molecular Biology, 2008, 382, 203-212.	4.2	35
69	Using Fluorescence Correlation Spectroscopy to Study Conformational Changes in Denatured Proteins. Biophysical Journal, 2008, 94, 4819-4827.	0.5	101
70	Effects of denaturants and osmolytes on proteins are accurately predicted by the molecular transfer model. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13403-13408.	7.1	182
71	Chemical Denaturants Inhibit the Onset of Dewetting. Journal of the American Chemical Society, 2008, 130, 11854-11855.	13.7	65
72	Design of an Optical Switch for Studying Conformational Dynamics in Individual Molecules of GroEL. Bioconjugate Chemistry, 2008, 19, 1339-1341.	3.6	11

Gilad Haran

#	Article	IF	CITATIONS
73	Managing light polarization via plasmon–molecule interactions within an asymmetric metal nanoparticle trimer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16448-16453.	7.1	218
74	Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3119-3124.	7.1	22
75	Protein-Protein Association in Polymer Solutions: From Dilute to Semidilute to Concentrated. Biophysical Journal, 2007, 92, 2139-2149.	0.5	193
76	Probing the Raman Scattering Tensors of Individual Molecules. Journal of Physical Chemistry B, 2006, 110, 2459-2461.	2.6	63
77	Coil-globule transition in the denatured state of a small protein. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11539-11543.	7.1	281
78	Two-state analysis of single-molecule Raman spectra of crystal violet. Chemical Physics, 2005, 318, 44-49.	1.9	27
79	Editorial: The Coming of Age. ChemPhysChem, 2005, 6, 755-758.	2.1	3
80	Ribosome exit tunnel can entropically stabilize Â-helices. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18956-18961.	7.1	140
81	Separating the Contribution of Translational and Rotational Diffusion to Protein Association. Journal of the American Chemical Society, 2005, 127, 15138-15144.	13.7	81
82	Observation of Calcium-dependent Unidirectional Rotational Motion in Recombinant Photosynthetic F1-ATPase Molecules. Journal of Biological Chemistry, 2004, 279, 47415-47418.	3.4	26
83	Noise reduction in single-molecule fluorescence trajectories of folding proteins. Chemical Physics, 2004, 307, 137-145.	1.9	45
84	Two-State Folding Observed in Individual Protein Molecules. Journal of the American Chemical Society, 2004, 126, 14686-14687.	13.7	169
85	Single molecule raman spectroscopy and local work function fluctuations. Israel Journal of Chemistry, 2004, 44, 385-390.	2.3	36
86	Watching proteins fold one molecule at a time. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3197-3202.	7.1	343
87	Single-molecule fluorescence spectroscopy of biomolecular folding. Journal of Physics Condensed Matter, 2003, 15, R1291-R1317.	1.8	69
88	Immobilization in Surface-Tethered Lipid Vesicles as a New Tool for Single Biomolecule Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 12165-12170.	2.6	283
89	Time-Dependent Single-Molecule Raman Scattering as a Probe of Surface Dynamics. Journal of Physical Chemistry B, 2001, 105, 12348-12354.	2.6	270
90	Microenviromental Investigation of Polymer-Bound Fluorescent Chelator by Fluorescence Microscopy and Optical Spectroscopy. Analytical Chemistry, 2001, 73, 4096-4103.	6.5	18

#	Article	IF	CITATIONS
91	Femtosecond Polarized Pumpâ^'Probe and Stimulated Emission Spectroscopy of the Isomerization Reaction of Rhodopsin. Journal of Physical Chemistry A, 1999, 103, 2202-2207.	2.5	77
92	Femtosecond far-infrared pump-probe spectroscopy: A new tool for studying low-frequency vibrational dynamics in molecular condensed phases. Chemical Physics Letters, 1997, 274, 365-371.	2.6	82
93	Excited state dynamics of bacteriorhodopsin revealed by transient stimulated emission spectra. Chemical Physics Letters, 1996, 261, 389-395.	2.6	91
94	Picosecond fluorescence spectroscopy of a single-chain class I major histocompatibility complex encoded protein in its peptide loaded and unloaded states. Immunology Letters, 1994, 40, 125-132.	2.5	7
95	Higher-Order Photon Statistics as a New Tool to Reveal Hidden Excited States in a Plasmonic Cavity. ACS Photonics, 0, , .	6.6	5