Manching Ku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/80609/publications.pdf

Version: 2024-02-01

43 papers

32,110 citations

147801 31 h-index 276875 41 g-index

46 all docs

46 docs citations

46 times ranked

49708 citing authors

#	Article	IF	CITATIONS
1	An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489, 57-74.	27.8	15,516
2	Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007, 448, 553-560.	27.8	3,733
3	Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 2011, 473, 43-49.	27.8	2,630
4	In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448, 318-324.	27.8	2,517
5	Dissecting direct reprogramming through integrative genomic analysis. Nature, 2008, 454, 49-55.	27.8	1,344
6	A User's Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biology, 2011, 9, e1001046.	5 . 6	1,257
7	Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains. PLoS Genetics, 2008, 4, e1000242.	3.5	878
8	Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell Stem Cell, 2015, 17, 705-718.	11.1	545
9	Jarid2 and PRC2, partners in regulating gene expression. Genes and Development, 2010, 24, 368-380.	5. 9	434
10	GC-Rich Sequence Elements Recruit PRC2 in Mammalian ES Cells. PLoS Genetics, 2010, 6, e1001244.	3.5	368
11	Reprogramming Factor Expression Initiates Widespread Targeted Chromatin Remodeling. Cell Stem Cell, 2011, 8, 96-105.	11.1	345
12	An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nature Genetics, 2014, 46, 364-370.	21.4	333
13	SAM Domain Polymerization Links Subnuclear Clustering of PRC1 to Gene Silencing. Developmental Cell, 2013, 26, 565-577.	7.0	271
14	Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons. Nature Neuroscience, 2019, 22, 243-255.	14.8	209
15	H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions. Genome Biology, 2012, 13, R85.	9.6	166
16	Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell, 2022, 40, 639-655.e13.	16.8	166
17	Control of Phenotypic Plasticity of Smooth Muscle Cells by Bone Morphogenetic Protein Signaling through the Myocardin-related Transcription Factors. Journal of Biological Chemistry, 2007, 282, 37244-37255.	3.4	147
18	Negative regulation of the Wnt-beta-catenin pathway by the transcriptional repressor HBP1. EMBO Journal, 2001, 20, 4500-4511.	7.8	139

#	Article	lF	CITATIONS
19	Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 1757-1769.	4.8	120
20	Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer's patients. Cell Stem Cell, 2021, 28, 1533-1548.e6.	11.1	119
21	Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity InÂVitro. Cell Stem Cell, 2018, 22, 684-697.e9.	11.1	118
22	Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature Methods, 2010, 7, 47-49.	19.0	112
23	Mitochondrial Aging Defects Emerge in Directly Reprogrammed Human Neurons due to Their Metabolic Profile. Cell Reports, 2018, 23, 2550-2558.	6.4	93
24	Wilms Tumor Chromatin Profiles Highlight Stem Cell Properties and a Renal Developmental Network. Cell Stem Cell, 2010, 6, 591-602.	11.1	80
25	Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nature Medicine, 2021, 27, 1806-1817.	30.7	79
26	Regulatory T Cells Promote Apelin-Mediated Sprouting Angiogenesis in Type 2 Diabetes. Cell Reports, 2018, 24, 1610-1626.	6.4	60
27	MicroRNA-146a regulates immune-related adverse events caused by immune checkpoint inhibitors. JCI Insight, 2020, 5, .	5.0	49
28	In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Research, 2013, 41, e181-e181.	14.5	47
29	Positive and Negative Regulation of the Transforming Growth Factor \hat{I}^2 /Activin Target Gene goosecoid by the TFII-I Family of Transcription Factors. Molecular and Cellular Biology, 2005, 25, 7144-7157.	2.3	39
30	OAZ Regulates Bone Morphogenetic Protein Signaling through Smad6 Activation. Journal of Biological Chemistry, 2006, 281, 5277-5287.	3.4	38
31	Chemical modulation of transcriptionally enriched signaling pathways to optimize the conversion of fibroblasts into neurons. ELife, 2019, 8, .	6.0	38
32	Single-Cell RNA-Seq Reveals that CD9 Is a Negative Marker of Glucose-Responsive Pancreatic \hat{l}^2 -like Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2020, 15, 1111-1126.	4.8	35
33	Single-cell transcriptomics reveal that PD-1 mediates immune tolerance by regulating proliferation of regulatory T cells. Genome Medicine, 2018, 10, 71.	8.2	30
34	Deconstructive somatic cell nuclear transfer reveals novel regulatory T-cell subsets. Journal of Allergy and Clinical Immunology, 2018, 142, 997-1000.e4.	2.9	9
35	Nuclear transfer nTreg model reveals fate-determining TCR- \hat{l}^2 and novel peripheral nTreg precursors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2316-25.	7.1	8
36	Single-cell transcriptomics uncover distinct innate and adaptive cell subsets during tissue homeostasis and regeneration. Journal of Leukocyte Biology, 2020, 108, 1593-1602.	3.3	6

3

Manching Ku

#	Article	IF	CITATIONS
37	Negative correlation of single-cell <i>PAX3:FOXO1</i> expression with tumorigenicity in rhabdomyosarcoma. Life Science Alliance, 2021, 4, e202001002.	2.8	4
38	Prediabetes Induced by a Single Autoimmune B Cell Clone. Frontiers in Immunology, 2020, 11, 1073.	4.8	3
39	Dynamic transcriptome analysis reveals signatures of paradoxical effect of vemurafenib on human dermal fibroblasts. Cell Communication and Signaling, 2021, 19, 123.	6.5	3
40	Abstract 4782: Epigenetic resistance to Notch inhibition in T cell acute lymphoblastic leukemia. , 2014, , .		2
41	Premature Activation of Immune Transcription Programs in Autoimmune-Predisposed Mouse Embryonic Stem Cells and Blastocysts. International Journal of Molecular Sciences, 2020, 21, 5743.	4.1	0
42	Abstract 3122: Negative correlation of single-cell PAX3: FOXO1 expression with tumorigenicity in rhabdomyosarcoma. , 2021, , .		0
43	Multiomic Insights into Novel Treg Subset. Blood, 2018, 132, 863-863.	1.4	0