Faqi Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8060448/publications.pdf

Version: 2024-02-01

361413 552781 1,077 26 20 26 citations h-index g-index papers 26 26 26 1527 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	In situ formation of CuWO4/WO3 heterojunction plates array films with enhanced photoelectrochemical properties. International Journal of Hydrogen Energy, 2015, 40, 6512-6520.	7.1	131
2	Nitrogen-doped graphene aerogel-supported spinel CoMn2O4 nanoparticles as an efficient catalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 299, 492-500.	7.8	88
3	Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes. Electrochimica Acta, 2015, 160, 57-63.	5.2	71
4	Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal, 2020, 379, 122256.	12.7	64
5	Modulating Charge Transfer Efficiency of Hematite Photoanode with Hybrid Dualâ€Metal–Organic Frameworks for Boosting Photoelectrochemical Water Oxidation. Advanced Science, 2020, 7, 2002563.	11.2	56
6	In situ synthesis of g-C ₃ N ₄ /WO ₃ heterojunction plates array films with enhanced photoelectrochemical performance. RSC Advances, 2015, 5, 69753-69760.	3.6	54
7	In situ synthesis of CdS/CdWO4/WO3 heterojunction films with enhanced photoelectrochemical properties. Journal of Power Sources, 2016, 325, 591-597.	7.8	53
8	\hat{I}^3 -ray induced formation of oxygen vacancies and Ti3+ defects in anatase TiO2 for efficient photocatalytic organic pollutant degradation. Science of the Total Environment, 2020, 747, 141533.	8.0	53
9	Ce-doped CdS quantum dot sensitized TiO2 nanorod films with enhanced visible-light photoelectrochemical properties. Applied Surface Science, 2018, 455, 476-483.	6.1	52
10	Exploring the nitrogen species of nitrogen doped graphene as electrocatalysts for oxygen reduction reaction in Al–air batteries. International Journal of Hydrogen Energy, 2016, 41, 10354-10365.	7.1	51
11	Ultrathin Co3O4 nanosheet clusters anchored on nitrogen doped carbon nanotubes/3D graphene as binder-free cathodes for Al-air battery. Chemical Engineering Journal, 2020, 381, 122681.	12.7	49
12	Three-dimensional Composite Catalysts for Al–O ₂ Batteries Composed of CoMn ₂ O ₄ Nanoneedles Supported on Nitrogen-Doped Carbon Nanotubes/Graphene. ACS Applied Materials & Description (Section 2019), 11, 21526-21535.	8.0	42
13	In Situ Formation of WO ₃ -Based Heterojunction Photoanodes with Abundant Oxygen Vacancies via a Novel Microbattery Method. ACS Applied Materials & Interfaces, 2019, 11, 15467-15477.	8.0	39
14	In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid. Journal of Solid State Electrochemistry, 2017, 21, 2231-2240.	2.5	35
15	Oxygen-Deficient Nanofiber WO _{3â€"<i>x</i>} /WO ₃ Homojunction Photoanodes Synthesized via a Novel Metal Self-Reducing Method. ACS Applied Materials & amp; Interfaces, 2019, 11, 39951-39960.	8.0	32
16	Facile Synthesis of FeOOH Quantum Dots Modified ZnO Nanorods Films via a Metal-Solating Process. ACS Sustainable Chemistry and Engineering, 2018, 6, 7789-7798.	6.7	31
17	Efficient solar water oxidation by WO3 plate arrays film decorated with CoOx electrocatalyst. International Journal of Hydrogen Energy, 2016, 41, 11925-11932.	7.1	29
18	α-Fe2O3 nanoarrays photoanodes decorated with Ni-MOFs for enhancing photoelectrochemical water oxidation. International Journal of Hydrogen Energy, 2020, 45, 28836-28846.	7.1	28

#	Article	IF	CITATION
19	Boosting Photoelectrochemical Performance of BiVO ₄ through Photoassisted Self-Reduction. ACS Applied Energy Materials, 2020, 3, 4403-4410.	5.1	28
20	Preparation of DyVO4/WO3 heterojunction plate array films with enhanced photoelectrochemical activity. RSC Advances, 2016, 6, 10393-10400.	3 . 6	23
21	Boric acid assisted synthesis of WO3 nanostructures with highly reactive (002) facet and enhanced photoelectrocatalytic activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 13836-13845.	2.2	20
22	Ultrafast fabrication of nanostructure WO3 photoanodes by hybrid microwave annealing with enhanced photoelectrochemical and photoelectrocatalytic activities. International Journal of Hydrogen Energy, 2018, 43, 8770-8778.	7.1	16
23	S-C ₃ N ₄ Quantum Dot Decorated ZnO Nanorods to Improve Their Photoelectrochemical Performance. Nano, 2017, 12, 1750064.	1.0	13
24	High power density Al-air batteries with commercial three-dimensional aluminum foam anode. Ionics, 2020, 26, 5045-5054.	2.4	10
25	Reduced mesoporous Co3O4 nanowires grown on 3D graphene as efficient catalysts for oxygen reduction and binder-free electrodes in aluminum–air batteries. Journal of Materials Science, 2021, 56, 3861-3873.	3.7	7
26	Evolution of Structure and Properties of Micro-Nano Structure 2507 Duplex Stainless Steel Prepared by Aluminothermic Reduction. Crystals, 2022, 12, 848.	2.2	2