Klaudia Jomova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8060434/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, 283, 65-87.	2.0	2,397
2	Arsenic: toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 2011, 31, 95-107.	1.4	1,038
3	Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 2010, 345, 91-104.	1.4	891
4	Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 2017, 38, 592-607.	4.0	781
5	Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Archives of Toxicology, 2016, 90, 1-37.	1.9	730
6	Importance of Iron Chelation in Free Radical-Induced Oxidative Stress and Human Disease. Current Pharmaceutical Design, 2011, 17, 3460-3473.	0.9	204
7	Health protective effects of carotenoids and their interactions with other biological antioxidants. European Journal of Medicinal Chemistry, 2013, 70, 102-110.	2.6	182
8	Management of oxidative stress and other pathologies in Alzheimer's disease. Archives of Toxicology, 2019, 93, 2491-2513.	1.9	172
9	Redox active metal-induced oxidative stress in biological systems. Transition Metal Chemistry, 2012, 37, 127-134.	0.7	162
10	A Switch between Antioxidant and Prooxidant Properties of the Phenolic Compounds Myricetin, Morin, 3′,4′-Dihydroxyflavone, Taxifolin and 4-Hydroxy-Coumarin in the Presence of Copper(II) Ions: A Spectroscopic, Absorption Titration and DNA Damage Study. Molecules, 2019, 24, 4335.	1.7	104
11	FTIR spectroscopy study of polyamide-6 irradiated by electron and proton beams. Polymer Degradation and Stability, 2012, 97, 523-531.	2.7	79
12	Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. International Journal of Molecular Sciences, 2021, 22, 1619.	1.8	65
13	Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer's disease using multifunctional tacrine-coumarin hybrid molecules. Journal of Inorganic Biochemistry, 2016, 161, 52-62.	1.5	63
14	Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate‒Neocuproine Ternary Copper(II) Complexes. Molecules, 2015, 20, 2115-2137.	1.7	62
15	Redox-cycling and intercalating properties of novel mixed copper(II) complexes with non-steroidal anti-inflammatory drugs tolfenamic, mefenamic and flufenamic acids and phenanthroline functionality: Structure, SOD-mimetic activity, interaction with albumin, DNA damage study and anticancer activity, lournal of Inorganic Biochemistry, 2019, 194, 97-113.	1.5	62
16	Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study. Food and Chemical Toxicology, 2017, 110, 340-350.	1.8	55
17	Chelators in Iron and Copper Toxicity. Current Pharmacology Reports, 2016, 2, 271-280.	1.5	34
18	The effect of electron beam irradiation on properties of virgin and glass fiber-reinforced polyamide 6. Radiation Physics and Chemistry, 2014, 102, 159-166.	1.4	30

#	Article	IF	CITATIONS
19	Copper(II) complexes with new fluoroquinolones: Synthesis, structure, spectroscopic and theoretical study, DNA damage, cytotoxicity and antiviral activity. Journal of Inorganic Biochemistry, 2015, 150, 160-173.	1.5	30
20	EPR Spectroscopy of a Clinically Active (1:2) Copper(II)-Histidine Complex Used in the Treatment of Menkes Disease: A Fourier Transform Analysis of a Fluid CW-EPR Spectrum. Molecules, 2014, 19, 980-991.	1.7	27
21	Electron beam irradiated sheep wool – Prospective sorbent for heavy metals in wastewater. Separation and Purification Technology, 2018, 193, 345-350.	3.9	27
22	Electron transfer from all-trans \hat{l}^2 -carotene to the t-butyl peroxyl radical at low oxygen pressure (an) Tj ETQq0 O	0 rgBT /Ov 1.2	verlock 10 Tf 5 24
23	Evaluation of the ET-AAS and HG-AAS methods of selenium determination in vegetables. Journal of Proteomics, 2008, 70, 1287-1291.	2.4	23
24	The effect of electron beam on sheep wool. Polymer Degradation and Stability, 2015, 111, 151-158.	2.7	23
25	The effect of Luteolin on DNA damage mediated by a copper catalyzed Fenton reaction. Journal of Inorganic Biochemistry, 2022, 226, 111635.	1.5	19
26	Thermodynamics of Free Radical Reactions and the Redox Environment of a Cell. ACS Symposium Series, 2011, , 71-82.	0.5	14
27	Crosslinking of polyamide-6 initiated by proton beam irradiation. Radiation Physics and Chemistry, 2017, 133, 52-57.	1.4	14
28	Sorption properties of sheep wool irradiated by accelerated electron beam. Chemical Papers, 2016, 70, .	1.0	12
29	Effect of drying methods on the content of natural pigments and antioxidant capacity in extracts from medicinal plants: a spectroscopic study. Chemical Papers, 2017, 71, 1993-2002.	1.0	11
30	Some Properties of Electron Beam-Irradiated Sheep Wool Linked to Cr(III) Sorption. Molecules, 2019, 24, 4401.	1.7	11
31	The Transfer of Heavy Metals from Contaminated Soils into Agricultural Plants in High Tatras Region. Czech Journal of Food Sciences, 2009, 27, S390-S393.	0.6	9
32	The effect of gamma irradiation in air and inert atmosphere on structure and properties of unfilled or glass fibre-reinforced polyamide 6. Polymer Bulletin, 2016, 73, 1775-1794.	1.7	9
33	Testing of electron beam irradiated sheep wool for adsorption of Cr(III) and Co(II) of higher concentrations. Polymer Testing, 2021, 99, 107191.	2.3	9
34	Effect of Heavy Metal Treatment on Molecular Changes in Root Tips of Lupinus luteus L Czech Journal of Food Sciences, 2009, 27, S386-S389.	0.6	8
35	Role of Post-Exposure Time in Co(II) Sorption of Higher Concentrations on Electron Irradiated Sheep Wool. Molecules, 2019, 24, 2639.	1.7	7
36	Radiation-modified wool for adsorption of redox metals and potentially for nanoparticles.	2.6	7

Nanotechnology Reviews, 2020, 9, 1017-1026.

Klaudia Jomova

#	Article	IF	CITATIONS
37	Clustering of Chickpea (Cicer arietinum L.) Accessions. Genetic Resources and Crop Evolution, 2005, 52, 1039-1048.	0.8	6
38	Two centrosymmetric dinuclear phenanthroline–copper(II) complexes with 3,5-dichloro-2-hydroxybenzoic acid and 5-chloro-2-hydroxybenzoic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, m85-m89.	0.4	6
39	Antimicrobial and antifungal activities of bifunctional cooper(ii) complexes with non-steroidal anti-inflammatory drugs, flufenamic, mefenamic and tolfenamic acids and 1,10-phenanthroline. Open Chemistry, 2020, 18, 1444-1451.	1.0	6
40	Enrichment of chickpea genetic resources collection monitored by microsatellites. Czech Journal of Genetics and Plant Breeding, 2009, 45, 11-17.	0.4	5
41	A tetranuclear copper(II) cluster: bis(μ-4-chlorobenzoato-κ2O:O′)(4-chlorobenzoato-κ2O,O′)(4-chlorobenzoato-κO)tetrakis(μ3-2-pyri Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, m318-m320.	dylme tha nol	ato Ĵ° 4N,O:O
42	Microsatellite markers discriminating accessions within collections of plant genetic resources. Cellular and Molecular Biology Letters, 2002, 7, 745-51.	2.7	5
43	Redox cycling mechanisms in the colon. Medical Hypotheses, 2012, 79, 418-419.	0.8	4
44	Character of Innovations in Environmental Education. Procedia, Social and Behavioral Sciences, 2015, 197, 1697-1702.	0.5	4
45	Scouring Test of Sheep Wool Intended for Sorption. Fibres and Textiles in Eastern Europe, 2019, 27, 24-29.	0.2	4
46	Structures of copper(II) 2-chlorobenzoate monohydrate and copper(II) 3,5-dichlorobenzoate trihydrate. Acta Chimica Slovaca, 2012, 5, 15-20.	0.5	3
47	Irradiated lanoline as a prospective substance for biomedical applications: A spectroscopic and thermal study. Radiation Physics and Chemistry, 2015, 113, 41-46.	1.4	3
48	Formation of supramolecular hydrogen-bonding chains and networks from copper (II) halogenobenzoates with N-methylnicotinamide: Supramolecular isomerism. Polyhedron, 2020, 175, 114237.	1.0	3
49	Nitrate removal from aqueous solution by way of adsorption on modified sheep wool. Surface Innovations, 2022, 10, 68-75.	1.4	3
50	Sheep Wool Humidity under Electron Irradiation Affects Wool Sorptivity towards Co(II) Ions. Molecules, 2021, 26, 5206.	1.7	3
51	Effect of drying methods on content of some natural pigments in Urtica dioica L. and Melissa officinalis L Journal of Microbiology, Biotechnology and Food Sciences, 2015, 05, 182-185.	0.4	3
52	Synthesis, crystal structures and properties of coordination polymers from copper(II) adipate. Transition Metal Chemistry, 2015, 40, 857-868.	0.7	2
53	Chemo-mechanical coupling in molecular motors interpreted through the uncertainty relations. Chemical Physics, 2010, 372, 13-16.	0.9	0
54	Analysis of Natural Materials' Adsorption Efficiency Relating Co(II) Using Atomic Absorption Spectroscopy: Laboratory Experiment. Journal of Chemical Education, 2021, 98, 626-632.	1.1	0

#	Article	IF	CITATIONS
55	PIGMENT PROFILE OF OLIVE OILS DETERMINED BY SCHOOL MEASUREMENT SYSTEM LABQUEST AND SPECTROMETER. Journal of Technology and Information Education, 2014, 6, 48-57.	0.1	0