
Nicola Clayton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8059909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Episodic-like memory during cache recovery by scrub jays. Nature, 1998, 395, 272-274.	27.8	1,344
2	The Mentality of Crows: Convergent Evolution of Intelligence in Corvids and Apes. Science, 2004, 306, 1903-1907.	12.6	1,014
3	Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 2012, 11, 141-168.	46.4	960
4	Planning for the future by western scrub-jays. Nature, 2007, 445, 919-921.	27.8	702
5	Can animals recall the past and plan for the future?. Nature Reviews Neuroscience, 2003, 4, 685-691.	10.2	620
6	The evolution of self-control. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2140-8.	7.1	602
7	Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 2001, 414, 443-446.	27.8	599
8	Food-Caching Western Scrub-Jays Keep Track of Who Was Watching When. Science, 2006, 312, 1662-1665.	12.6	419
9	Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 489-505.	4.0	327
10	Western Scrub-Jays Anticipate Future Needs Independently of Their Current Motivational State. Current Biology, 2007, 17, 856-861.	3.9	270
11	A test of the adaptive specialization hypothesis: Population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla) Behavioral Neuroscience, 2002, 116, 515-522.	1.2	251
12	Social cognition by food-caching corvids. The western scrub-jay as a natural psychologist. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 507-522.	4.0	240
13	Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches Journal of Comparative Psychology (Washington, D C: 1983), 1999, 113, 403-416.	0.5	229
14	Elements of episodic–like memory in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1483-1491.	4.0	217
15	Memory for spatial and object-specific cues in food-storing and non-storing birds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 174, 371.	1.6	210
16	Hippocampal growth and attrition in birds affected by experience Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7410-7414.	7.1	189
17	Analysing hippocampal function in transgenic mice: an ethological perspective. Trends in Neurosciences, 1999, 22, 47-51.	8.6	189
18	Investigating Physical Cognition in Rooks, Corvus frugilegus. Current Biology, 2006, 16, 697-701.	3.9	183

#	Article	IF	CITATIONS
19	Episodic memory: what can animals remember about their past?. Trends in Cognitive Sciences, 1999, 3, 74-80.	7.8	176
20	Song Learning in Zebra Finches (Taeniopygia guttata): Progress and Prospects. Advances in the Study of Behavior, 1988, 18, 1-34.	1.6	169
21	Scrub jays (Aphelocoma coerulescens) form integrated memories of the multiple features of caching episodes Journal of Experimental Psychology, 2001, 27, 17-29.	1.7	167
22	Species and sex differences in hippocampus size in parasitic and non-parasitic cowbirds. NeuroReport, 1996, 7, 505-508.	1.2	157
23	Song tutor choice in zebra finches. Animal Behaviour, 1987, 35, 714-721.	1.9	148
24	The behaviour and evolution of cache protection and pilferage. Animal Behaviour, 2006, 72, 13-23.	1.9	148
25	Neophobia is not only avoidance: improving neophobia tests by combining cognition and ecology. Current Opinion in Behavioral Sciences, 2015, 6, 82-89.	3.9	148
26	Wild psychometrics: evidence for â€~general' cognitive performance inÂwild New Zealand robins, Petroica longipes. Animal Behaviour, 2015, 109, 101-111.	1.9	148
27	Cooperative problem solving in rooks (<i>Corvus frugilegus</i>). Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1421-1429.	2.6	141
28	Postconflict Third-Party Affiliation in Rooks, Corvus frugilegus. Current Biology, 2007, 17, 152-158.	3.9	137
29	Song discrimination learning in zebra finches. Animal Behaviour, 1988, 36, 1016-1024.	1.9	136
30	Retrospective cognition by food-caching western scrub-jays. Learning and Motivation, 2005, 36, 159-176.	1.2	134
31	Cache protection strategies by western scrub-jays, Aphelocoma californica: implications for social cognition. Animal Behaviour, 2005, 70, 1251-1263.	1.9	131
32	Intelligence in Corvids and Apes: A Case of Convergent Evolution?. Ethology, 2009, 115, 401-420.	1.1	130
33	An evolutionary perspective on caching by corvids. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 417-423.	2.6	127
34	Looking for episodic memory in animals and young children: Prospects for a new minimalism. Neuropsychologia, 2009, 47, 2330-2340.	1.6	125
35	Episodic future thinking in 3- to 5-year-old children: The ability to think of what will be needed from a different point of view. Cognition, 2010, 114, 56-71.	2.2	123
36	Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem. Animal Cognition, 2007, 10, 225-231.	1.8	117

#	Article	IF	CITATIONS
37	Higher Body Mass Index is Associated with Episodic Memory Deficits in Young Adults. Quarterly Journal of Experimental Psychology, 2016, 69, 2305-2316.	1.1	116

Interacting cache memories: Evidence for flexible memory use by Western scrub-jays (Aphelocoma) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

39	Prospective cognition in animals. Behavioural Processes, 2009, 80, 314-324.	1.1	112
40	Eurasian jays (<i>Garrulus glandarius</i>) overcome their current desires to anticipate two distinct future needs and plan for them appropriately. Biology Letters, 2012, 8, 171-175.	2.3	112
41	Long-Term Unpredictable Foraging Conditions and Physiological Stress Response in Mountain Chickadees (Poecile gambeli). General and Comparative Endocrinology, 2001, 123, 324-331.	1.8	111
42	Mental-state attribution drives rapid, reflexive gaze following. Attention, Perception, and Psychophysics, 2010, 72, 695-705.	1.3	111
43	Spatial learning induces neurogenesis in the avian brain. Behavioural Brain Research, 1997, 89, 115-128.	2.2	110
44	Western scrub-jays (Aphelocoma californica) use cognitive strategies to protect their caches from thieving conspecifics. Animal Cognition, 2004, 7, 37-43.	1.8	110
45	Comparative Social Cognition. Annual Review of Psychology, 2009, 60, 87-113.	17.7	110
46	Dimensions of Animal Consciousness. Trends in Cognitive Sciences, 2020, 24, 789-801.	7.8	110
47	Prometheus to Proust: the case for behavioural criteria for â€~mental time travel'. Trends in Cognitive Sciences, 2003, 7, 436-437.	7.8	107
48	Does hippocampal size correlate with the degree of caching specialization?. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2423-2429.	2.6	107
49	The hippocampus, spatial memory and food hoarding: a puzzle revisited. Trends in Ecology and Evolution, 2005, 20, 17-22.	8.7	106
50	Avian Models for Human Cognitive Neuroscience: A Proposal. Neuron, 2015, 86, 1330-1342.	8.1	106
51	Comparative cognition for conservationists. Trends in Ecology and Evolution, 2014, 29, 489-495.	8.7	105
52	Memory for the content of caches by scrub jays (Aphelocoma coerulescens) Journal of Experimental Psychology, 1999, 25, 82-91.	1.7	104
53	Tool use and physical cognition in birds and mammals. Current Opinion in Neurobiology, 2009, 19, 27-33.	4.2	104
54	Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain. Neuropsychologia, 2017, 96, 137-149.	1.6	97

#	Article	IF	CITATIONS
55	Chimpanzees solve the trap problem when the confound of tool-use is removed Journal of Experimental Psychology, 2009, 35, 23-34.	1.7	95
56	Evidence of episodic-like memory in cuttlefish. Current Biology, 2013, 23, R1033-R1035.	3.9	95
5 7	Subspecies recognition and song learning in zebra finches. Animal Behaviour, 1990, 40, 1009-1017.	1.9	94
58	The social life of corvids. Current Biology, 2007, 17, R652-R656.	3.9	94
59	Memory in food-storing birds: from behaviour to brain. Current Opinion in Neurobiology, 1995, 5, 149-154.	4.2	90
60	Evolution of the avian brain and intelligence. Current Biology, 2005, 15, R946-R950.	3.9	90
61	Tool-use and instrumental learning in the Eurasian jay (Garrulus glandarius). Animal Cognition, 2011, 14, 441-455.	1.8	90
62	Effects of the mu-opioid receptor antagonist GSK1521498 on hedonic and consummatory eating behaviour: a proof of mechanism study in binge-eating obese subjects. Molecular Psychiatry, 2013, 18, 1287-1293.	7.9	89
63	Seasonal changes of hippocampus volume in parasitic cowbirds. Behavioural Processes, 1997, 41, 237-243.	1.1	88
64	Cache protection strategies by western scrub–jays (Aphelocoma californica): hiding food in the shade. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S387-90.	2.6	88
65	Development of memory and the hippocampus: comparison of food-storing and nonstoring birds on a one-trial associative memory task. Journal of Neuroscience, 1995, 15, 2796-2807.	3.6	85
66	Social Cognition Modulates the Sensory Coding of Observed Gaze Direction. Current Biology, 2009, 19, 1274-1277.	3.9	83
67	Memory and the hippocampus in food-storing birds: a comparative approach. Neuropharmacology, 1998, 37, 441-452.	4.1	82
68	Comparing the Complex Cognition of Birds and Primates. , 2004, , 3-55.		82
69	Motivational control of caching behaviour in the scrub jay,Aphelocoma coerulescens. Animal Behaviour, 1999, 57, 435-444.	1.9	78
70	A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behavioral Neuroscience, 2002, 116, 515-22.	1.2	78
71	Thinking with their trunks: elephants use smell but not sound to locate food and exclude nonrewarding alternatives. Animal Behaviour, 2014, 88, 91-98.	1.9	75
72	Problems faced by food-caching corvids and the evolution of cognitive solutions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 977-987.	4.0	74

#	Article	IF	CITATIONS
73	The relationship between dominance, corticosterone, memory, and food caching in mountain chickadees (Poecile gambeli). Hormones and Behavior, 2003, 44, 93-102.	2.1	73
74	Development of hippocampal specialisation in two species of tit (Parus spp.). Behavioural Brain Research, 1994, 61, 23-28.	2.2	72
75	Evidence suggesting that desire-state attribution may govern food sharing in Eurasian jays. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4123-4128.	7.1	71
76	Street smart: faster approach towards litter in urban areas by highly neophobic corvids and less fearful birds. Animal Behaviour, 2016, 117, 123-133.	1.9	71
77	The role of food- and object-sharing in the development of social bonds in juvenile jackdaws (Corvus) Tj ETQq1	1 0.784314 0.884314	rgBT /Overic
78	Do different tests of episodic memory produce consistent results in human adults?. Learning and Memory, 2013, 20, 491-498.	1.3	70
79	Using the Aesop's Fable Paradigm to Investigate Causal Understanding of Water Displacement by New Caledonian Crows. PLoS ONE, 2014, 9, e92895.	2.5	70
80	Mate choice and pair formation in Timor and Australian Mainland zebra finches. Animal Behaviour, 1990, 39, 474-480.	1.9	69
81	Behavioural coordination of dogs in a cooperative problem-solving task with a conspecific and a human partner. Animal Cognition, 2014, 17, 445-459.	1.8	69
82	Neurobiological bases of spatial learning in the natural environment. NeuroReport, 1998, 9, R-15-R-27.	1.2	68
83	Food sharing in jackdaws, Corvus monedula: what, why and with whom?. Animal Behaviour, 2006, 72, 297-304.	1.9	68
84	Hippocampal growth and maintenance depend on food-caching experience in juvenile mountain chickadees (Poecile gambeli) Behavioral Neuroscience, 2001, 115, 614-625.	1.2	66
85	Food Caching by Western Scrub-Jays (Aphelocoma californica) Is Sensitive to the Conditions at Recovery Journal of Experimental Psychology, 2005, 31, 115-124.	1.7	66
86	How intelligent is a cephalopod? Lessons from comparative cognition. Biological Reviews, 2021, 96, 162-178.	10.4	64
87	Neural aromatization accelerates the acquisition of spatial memory via an influence on the songbird hippocampus. Hormones and Behavior, 2004, 45, 250-258.	2.1	63
88	One-trial associative memory: comparison of food-storing and nonstoring species of birds. Learning and Behavior, 1994, 22, 366-372.	3.4	61
89	The hippocampus and memory: a comparative and ethological perspective. Current Opinion in Neurobiology, 2000, 10, 768-773.	4.2	61
90	Rapid Effects of Corticosterone on Cache Recovery in Mountain Chickadees (Parus gambeli). Hormones and Behavior, 2000, 37, 109-115.	2.1	61

#	Article	IF	CITATIONS
91	Grow Smart and Die Young: Why Did Cephalopods Evolve Intelligence?. Trends in Ecology and Evolution, 2019, 34, 45-56.	8.7	61
92	Hippocampal Tissue Transplants Reverse Lesion-Induced Spatial Memory Deficits in Zebra Finches (Taeniopygia guttata). Journal of Neuroscience, 1997, 17, 3861-3869.	3.6	60
93	The evolution of dance. Current Biology, 2016, 26, R5-R9.	3.9	59
94	Lateralization and unilateral transfer of spatial memory in marsh tits. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993, 171, 799-806.	1.6	58
95	Seasonal changes in neophobia and its consistency in rooks: the effect of novelty type and dominance position. Animal Behaviour, 2016, 121, 11-20.	1.9	58
96	Effects of demanding foraging conditions on cache retrieval accuracy in food-caching mountain chickadees (Poecile gambeli). Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 363-368.	2.6	57
97	New Caledonian Crows Learn the Functional Properties of Novel Tool Types. PLoS ONE, 2011, 6, e26887.	2.5	56
98	Ten years of research into avian models of episodic-like memory and its implications for developmental and comparative cognition. Behavioural Brain Research, 2010, 215, 221-234.	2.2	55
99	Dominance, pair bonds and boldness determine social-foraging tactics in rooks, Corvus frugilegus. Animal Behaviour, 2013, 85, 1261-1269.	1.9	55
100	Effects of photoperiod on food-storing and the hippocampus in birds. NeuroReport, 1995, 6, 1701-1704.	1.2	54
101	Development of food-storing and the hippocampus in juvenile marsh tits (Parus palustris). Behavioural Brain Research, 1996, 74, 153-159.	2.2	53
102	Stabilization of Sexual Preferences By Sexual Experience in Male Zebra Finches Taeniopygia Guttata Castanotis. Behaviour, 1991, 118, 144-154.	0.8	49
103	Western scrub-jays conceal auditory information when competitors can hear but cannot see. Biology Letters, 2009, 5, 583-585.	2.3	49
104	Scrub jays (Aphelocoma coerulescens) form integrated memories of the multiple features of caching episodes. Journal of Experimental Psychology, 2001, 27, 17-29.	1.7	49
105	New Caledonian Crows Use Mental Representations to Solve Metatool Problems. Current Biology, 2019, 29, 686-692.e3.	3.9	47
106	Corvid cognition. Current Biology, 2005, 15, R80-R81.	3.9	46
107	Episodic memory. Current Biology, 2007, 17, R189-R191.	3.9	46
108	The neuroethological development of food-storing memory: a case of use it, or lose it!. Behavioural Brain Research. 1995. 70. 95-102.	2.2	45

#	Article	IF	CITATIONS
109	Avian Theory of Mind and counter espionage by food-caching western scrub-jays (<i>Aphelocoma) Tj ETQq1 1 0</i>	.784314 r 1.8	gBT_/Overloc
110	Gaze sensitivity: function and mechanisms from sensory and cognitive perspectives. Animal Behaviour, 2014, 87, 3-15.	1.9	45
111	Thinking ahead about where something is needed: New insights about episodic foresight in preschoolers. Journal of Experimental Child Psychology, 2015, 129, 98-109.	1.4	45
112	Rational rats. Nature Neuroscience, 2006, 9, 472-474.	14.8	44
113	Mental time travel in animals. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 915-930.	2.8	44
114	Elephants have a nose for quantity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12566-12571.	7.1	44
115	Convergent Evolution of Cognition in Corvids, Apes and Other Animals. , 0, , 80-101.		44
116	Lateralization in Paridae: comparison of a storing and a non-storing species on a one-trial associative memory task. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993, 171, 807-815.	1.6	41
117	The role of age and experience in the behavioural development of food-storing and retrieval in marsh tits, Parus palustris. Animal Behaviour, 1994, 47, 1435-1444.	1.9	41
118	Androgen metabolism in the juvenile oscine forebrain: A cross-species analysis at neural sites implicated in memory function. , 1999, 40, 397-406.		41
119	The social suppression of caching in western scrub-jays (Aphelocoma californica). Behaviour, 2005, 142, 961-977.	0.8	40
120	The Ontogeny of Food-Storing and Retrieval in Marsh Tits. Behaviour, 1992, 122, 11-25.	0.8	38
121	Memory Performance Influences Male Reproductive Success in a Wild Bird. Current Biology, 2019, 29, 1498-1502.e3.	3.9	38
122	Effects of photoperiod on memory and food storing in captive marsh tits,Parus palustris. Animal Behaviour, 1996, 52, 715-726.	1.9	36
123	Introduction. Social intelligence: from brain to culture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 485-488.	4.0	36
124	Seasonal patterns of food storing in the Jay <i>Garrulus glandarius</i> . Ibis, 1996, 138, 250-255.	1.9	36
125	Interacting Cache memories: evidence for flexible memory use by Western Scrub-Jays (Aphelocoma) Tj ETQq1 1	0.784314 1.7	rgBT /Overlo
126	Song learning and mate choice in estrildid finches raised by two species. Animal Behaviour, 1988, 36, 1589-1600.	1.9	35

#	Article	IF	CITATIONS
127	Testing episodic memory in animals: A new approach. Physiology and Behavior, 2001, 73, 755-762.	2.1	35
128	Careful cachers and prying pilferers: Eurasian jays (<i>Garrulus glandarius</i>) limit auditory information available to competitors. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122238.	2.6	35
129	Can male Eurasian jays disengage from their own current desire to feed the female what she wants?. Biology Letters, 2014, 10, 20140042.	2.3	35
130	Are Animals Stuck in Time or Are They Chronesthetic Creatures?. Topics in Cognitive Science, 2009, 1, 59-71.	1.9	34
131	Eurasian jays, Garrulus glandarius, flexibly switch caching and pilfering tactics in response to social context. Animal Behaviour, 2012, 84, 1191-1200.	1.9	34
132	How Do Children Solve Aesop's Fable?. PLoS ONE, 2012, 7, e40574.	2.5	34
133	Eurasian jays (Garrulus glandarius) conceal caches from onlookers. Animal Cognition, 2014, 17, 1223-1226.	1.8	34
134	Cuttlefish exert self-control in a delay of gratification task. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203161.	2.6	34
135	Changes in spatial memory mediated by experimental variation in food supply do not affect hippocampal anatomy in mountain chickadees (<i>Poecile gambeli</i>). Journal of Neurobiology, 2002, 51, 142-148.	3.6	32
136	Social influences on foraging by rooks (Corvus frugilegus). Behaviour, 2008, 145, 1101-1124.	0.8	32
137	Contagious risk taking: social information and context influence wild jackdaws' responses to novelty and risk. Scientific Reports, 2016, 6, 27764.	3.3	32
138	Cuttlefish show flexible and future-dependent foraging cognition. Biology Letters, 2020, 16, 20190743.	2.3	32
139	Memory for the content of caches by scrub jays (Aphelocoma coerulescens). Journal of Experimental Psychology, 1999, 25, 82-91.	1.7	32
140	Cephalopod cognition. Current Biology, 2019, 29, R726-R732.	3.9	31
141	The rationality of animal memory: Complex caching strategies of western scrub jays. , 2006, , 197-216.		31
142	Replications in Comparative Cognition: What Should We Expect and How Can We Improve?. Animal Behavior and Cognition, 2020, 7, 1-22.	1.0	31
143	Song Learning in Bengalese Finches: a Comparison with Zebra Finches. Ethology, 2010, 76, 247-255.	1.1	30
144	Wild jackdaws, Corvus monedula , recognize individual humans and may respond to gaze direction with defensive behaviour. Animal Behaviour, 2015, 108, 17-24.	1.9	29

#	Article	IF	CITATIONS
145	Selfâ€control in crows, parrots and nonhuman primates. Wiley Interdisciplinary Reviews: Cognitive Science, 2019, 10, e1504.	2.8	29
146	Are Animals Autistic Savants. PLoS Biology, 2008, 6, e42.	5.6	28
147	New perspectives in gaze sensitivity research. Learning and Behavior, 2016, 44, 9-17.	1.0	28
148	The control of food-caching behavior by Western scrub-jays (Aphelocoma californica) Journal of Experimental Psychology, 2007, 33, 361-370.	1.7	27
149	Visual Cues Given by Humans Are Not Sufficient for Asian Elephants (Elephas maximus) to Find Hidden Food. PLoS ONE, 2013, 8, e61174.	2.5	27
150	EPS Mid-Career Award 2013: Ways of thinking: From crows to children and back again. Quarterly Journal of Experimental Psychology, 2015, 68, 209-241.	1.1	27
151	Song Tutor Choice in Zebra Finches and Bengalese Finches: the Relative Importance of Visual and Vocal Cues. Behaviour, 1988, 104, 281-299.	0.8	26
152	Observational visuospatial encoding of the cache locations of others by western scrub-jays (Aphelocoma californica). Journal of Ethology, 2007, 25, 271-279.	0.8	26
153	Alternative behavioral measures of postconflict affiliation. Behavioral Ecology, 2013, 24, 98-112.	2.2	26
154	The six blind men and the elephant: Are episodic memory tasks tests of different things or different tests of the same thing?. Journal of Experimental Child Psychology, 2015, 137, 164-171.	1.4	26
155	New Caledonian crows plan for specific future tool use. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201490.	2.6	26
156	Socio-ecological correlates of neophobia in corvids. Current Biology, 2022, 32, 74-85.e4.	3.9	26
157	Exclusion in corvids: The performance of food-caching Eurasian jays (Garrulus glandarius) Journal of Comparative Psychology (Washington, D C: 1983), 2013, 127, 428-435.	0.5	25
158	The effects of cross-fostering on assortative mating between zebra finch subspecies. Animal Behaviour, 1990, 40, 1102-1110.	1.9	24
159	Sexual dimorphism and species differences in HVC volumes of cowbirds Behavioral Neuroscience, 1999, 113, 1095-1099.	1.2	24
160	Salient eyes deter conspecific nest intruders in wild jackdaws (<i>Corvus monedula</i>). Biology Letters, 2014, 10, 20131077.	2.3	24
161	Current desires of conspecific observers affect cache-protection strategies in California scrub-jays and Eurasian jays. Current Biology, 2017, 27, R51-R53.	3.9	24
162	Song, sex and sensitive phases in the behavioural devebpment of birds. Trends in Ecology and Evolution, 1989, 4, 82-84.	8.7	23

#	Article	IF	CITATIONS
163	Evaluating a putative mimetic relationship between two butterflies, Adelpha bredowii and Limenitis lorquini. Ecological Entomology, 2002, 27, 68-75.	2.2	23
164	Food offering in jackdaws (Corvus monedula). Die Naturwissenschaften, 2003, 90, 238-240.	1.6	23
165	The development of caching and object permanence in western scrub-jays (Aphelocoma californica): Which emerges first?. Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 295-303.	0.5	23
166	Of babies and birds: complex tool behaviours are not sufficient for the evolution of the ability to create a novel causal intervention. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140837.	2.6	23
167	Hint-seeking behaviour of western scrub-jays in a metacognition task. Animal Cognition, 2016, 19, 53-64.	1.8	23
168	Do birds have the capacity for fun?. Current Biology, 2015, 25, R16-R20.	3.9	22
169	Evolution of iris colour in relation to cavity nesting and parental care in passerine birds. Biology Letters, 2017, 13, 20160783.	2.3	22
170	Convergent evolution of complex cognition: Insights from the field of avian cognition into the study of self-awareness. Learning and Behavior, 2021, 49, 9-22.	1.0	22
171	Western scrub-jays allocate longer observation time to more valuable information. Animal Cognition, 2014, 17, 859-867.	1.8	21
172	Harnessing learning biases is essential for applying social learning in conservation. Behavioral Ecology and Sociobiology, 2017, 71, 16.	1.4	21
173	Individuals with Autism Share Others' Emotions: Evidence from the Continuous Affective Rating and Empathic Responses (CARER) Task. Journal of Autism and Developmental Disorders, 2021, 51, 391-404.	2.7	21
174	Lateralization and unilateral transfer of spatial memory in marsh tits: are two eyes better than one?. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994, 174, 769.	1.6	20
175	Comparative studies of food-storing, memory, and The hippocampal formation in parids. Hippocampus, 1995, 5, 499-510.	1.9	20
176	Song behavior, NGF level and NPY distribution in the brain of adult male zebra finches. Behavioural Brain Research, 1999, 101, 85-92.	2.2	20
177	Motivation and memory in zebra finch (Taeniopygia guttata) foraging behavior. Animal Cognition, 2008, 11, 189-198.	1.8	20
178	What can What–When–Where (WWW) binding tasks tell us about young children's episodic foresight? Theory and two experiments. Cognitive Development, 2011, 26, 356-370.	1.3	20
179	New Caledonian crows infer the weight of objects from observing their movements in a breeze. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182332.	2.6	20
180	Storage of stones by Jays <i>Garrulus glandarius</i> . Ibis, 1994, 136, 331-334.	1.9	19

#	Article	IF	CITATIONS
181	The Effect of Photoperiod on Adrenocortical Stress Response in Mountain Chickadees (Poecile) Tj ETQq1 1 0.784	314 rgBT 1.8	Ölgerlock II
182	Wild jackdaws' reproductive success and their offspring's stress hormones are connected to provisioning rate and brood size, not to parental neophobia. General and Comparative Endocrinology, 2017, 243, 70-77.	1.8	19
183	What do rooks (Corvus frugilegus) understand about physical contact?. Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 288-293.	0.5	18
184	Zebra Finches and cognition. Emu, 2010, 110, 242-250.	0.6	18
185	A search game model of the scatter hoarder's problem. Journal of the Royal Society Interface, 2012, 9, 869-879.	3.4	18
186	Rook, But Not Jackdaw, Postâ€Conflict Thirdâ€Party Affiliation Reduces Aggression for Aggressors. Ethology, 2013, 119, 427-435.	1.1	18
187	Hippocampal growth and maintenance depend on food-caching experience in juvenile mountain chickadees (Poecile gambeli) Behavioral Neuroscience, 2001, 115, 614-625.	1.2	18
188	Animal minds: from computation to evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2670-2676.	4.0	17
189	How to Build a Scrub-Jay that Reads Minds. , 2008, , 65-97.		17
190	What do bonobos (Pan paniscus) understand about physical contact?. Journal of Comparative Psychology (Washington, D C: 1983), 2006, 120, 294-302.	0.5	16
191	Specializations of birds that attend army ant raids: An ecological approach to cognitive and behavioral studies. Behavioural Processes, 2012, 91, 267-274.	1.1	16
192	Caching at a distance: a cache protection strategy in Eurasian jays. Animal Cognition, 2016, 19, 753-758.	1.8	16
193	Comparing the face inversion effect in crows and humans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 1017-1027.	1.6	16
194	Episodic-like memory is preserved with age in cuttlefish. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211052.	2.6	16
195	No latitudinal differences in adrenocortical stress response in wintering black-capped chickadees (Poecile atricapilla). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 137, 95-103.	1.8	15
196	Pilfering Eurasian jays use visual and acoustic information to locate caches. Animal Cognition, 2014, 17, 1281-1288.	1.8	14
197	Western scrub-jays (Aphelocoma californica) solve multiple-string problems by the spatial relation of string and reward. Animal Cognition, 2016, 19, 1103-1114.	1.8	14
198	Cuttlefish retrieve whether they smelt or saw a previously encountered item. Scientific Reports, 2020, 10, 5413.	3.3	14

#	Article	IF	CITATIONS
199	Memory in Avian Food Caching and Song Learning: A General Mechanism or Different Processes?. Advances in the Study of Behavior, 1999, , 115-173.	1.6	13
200	A reply to the defenders of the faith. Trends in Cognitive Sciences, 2002, 6, 109-111.	7.8	13
201	Wild jackdaws are wary of objects that violate expectations of animacy. Royal Society Open Science, 2018, 5, 181070.	2.4	13
202	Replications, Comparisons, Sampling and the Problem of Representativeness in Animal Cognition Research. Animal Behavior and Cognition, 2021, 8, 273-295.	1.0	13
203	Comparative studies of postnatal neurogenesis and learning: a critical review. Avian Biology Research, 2001, 12, 103-125.	1.3	12
204	Animal Cognition: Crows Spontaneously Solve a Metatool Task. Current Biology, 2007, 17, R894-R895.	3.9	12
205	Flexible egocentricity: Asymmetric switch costs on a perspective-taking task Journal of Experimental Psychology: Learning Memory and Cognition, 2019, 45, 213-218.	0.9	12
206	A quantitative autoradiographic comparison of binding to glutamate receptor sub-types in hippocampus and forebrain regions of a food-storing and a non-food-storing bird. Behavioural Brain Research, 1998, 98, 89-94.	2.2	11
207	Hippocampal volume does not change seasonally in a non food-storing songbird. NeuroReport, 2001, 12, 1925-1928.	1.2	11
208	ls necessity the mother of innovation?Animal Innovation, edited by Simon M. Reader and Kevin N. Laland. Oxford University Press, 2003. £50.00 (hbk)/£19.00 (pbk) (288 pages). ISBN (hbk) 0 19 852621 0/(pb 0 19 852622 9. Trends in Cognitive Sciences, 2004, 8, 98-99.	k)7.8	11
209	Marsh Tits Parus palustris use tools to store food. Ibis, 1996, 138, 554-554.	1.9	11
210	Peep to pilfer: what scrub-jays like to watch when observing others. Animal Behaviour, 2012, 83, 1253-1260.	1.9	11
211	Re-caching by Western Scrub-Jays (Aphelocoma californica) Cannot Be Attributed to Stress. PLoS ONE, 2013, 8, e52936.	2.5	11
212	The interplay between psychological predispositions and skill learning in the evolution of tool use. Current Opinion in Behavioral Sciences, 2018, 20, 130-137.	3.9	11
213	Jays are sensitive to cognitive illusions. Royal Society Open Science, 2021, 8, 202358.	2.4	11
214	Performance in Object-Choice Aesop's Fable Tasks Are Influenced by Object Biases in New Caledonian Crows but not in Human Children. PLoS ONE, 2016, 11, e0168056.	2.5	11
215	Empirical evaluation of mental time travel. Behavioral and Brain Sciences, 2007, 30, 330-331.	0.7	10
216	No evidence of temporal preferences in caching by Western scrub-jays (Aphelocoma californica). Behavioural Processes, 2014, 103, 173-179.	1.1	10

#	Article	IF	CITATIONS
217	Memory, mental time travel and The Moustachio Quartet. Interface Focus, 2017, 7, 20160112.	3.0	10
218	A raven's memories are for the future. Science, 2017, 357, 126-127.	12.6	10
219	Comparing the non-linguistic hallmarks of episodic memory systems in corvids and children. Current Opinion in Behavioral Sciences, 2017, 17, 99-106.	3.9	10
220	Delayed gratification in New Caledonian crows and young children: influence of reward type and visibility. Animal Cognition, 2020, 23, 71-85.	1.8	10
221	Cephalopods: Ambassadors for rethinking cognition. Biochemical and Biophysical Research Communications, 2021, 564, 27-36.	2.1	10
222	Trialling Meta-Research in Comparative Cognition: Claims and Statistical Inference in Animal Physical Cognition. Animal Behavior and Cognition, 2020, 7, 419-444.	1.0	10
223	Desire-state attribution: Benefits of a novel paradigm using the food-sharing behavior of Eurasian jays (<i>Garrulus glandarius</i>). Communicative and Integrative Biology, 2016, 9, e1134065.	1.4	9
224	The development of support intuitions and object causality in juvenile Eurasian jays (Garrulus) Tj ETQq0 0 0 rgBT	/Ovgrlock 3.grlock	1g Tf 50 462
225	Error rate on the director's task is influenced by the need to take another's perspective but not the type of perspective. Royal Society Open Science, 2017, 4, 170284.	2.4	9
226	Shell Loss in Cephalopods: Trigger for, or By-Product of, the Evolution of Intelligence? A Reply to Mollo et al Trends in Ecology and Evolution, 2019, 34, 690-692.	8.7	9
227	Is Language Required to Represent Others' Mental States? Evidence From Beliefs and Other Representations. Cognitive Science, 2019, 43, e12710.	1.7	9
228	Neural Processes Underlying Tool Use in Humans, Macaques, and Corvids. Frontiers in Psychology, 2020, 11, 560669.	2.1	9
229	Nerve growth factor effects on the song control system of zebra finches. Neuroscience Letters, 1997, 223, 161-164.	2.1	8
230	Reply. Trends in Neurosciences, 1999, 22, 301-302.	8.6	8
231	Two-Year-Old Children's Understanding of Visual Perception and Knowledge Formation in Others. Journal of Cognition and Development, 2013, 14, 203-228.	1.3	8
232	Are owners' reports of their dogs' †guilty look' influenced by the dogs' action and evidence of the misdeed?. Behavioural Processes, 2015, 111, 97-100.	1.1	8
233	An unexpected audience. Science, 2020, 369, 1424-1426.	12.6	8
234	Waiting for the better reward: Comparison of delay of gratification in young children across two cultures. PLoS ONE, 2021, 16, e0256966.	2.5	8

#	Article	IF	CITATIONS
235	What Do Jays Know About Other Minds and Other Times?. Research and Perspectives in Neurosciences, 2009, , 109-123.	0.4	8
236	What should be compared in comparative mental time travel?. Trends in Cognitive Sciences, 2010, 14, 51-52.	7.8	7
237	Evidence from convergent evolution and causal reasoning suggests that conclusions on human uniqueness may be premature. Behavioral and Brain Sciences, 2012, 35, 241-242.	0.7	7
238	Inequity aversion in human adults: testing behavioural criteria from comparative cognition. Animal Cognition, 2013, 16, 765-772.	1.8	7
239	An avian perspective on simulating other minds. Learning and Behavior, 2016, 44, 203-204.	1.0	7
240	Convergent minds: the evolution of cognitive complexity in nature. Interface Focus, 2017, 7, 20170029.	3.0	7
241	Male New Zealand robins (Petroica longipes) cater to their mate's desire when sharing food in the wild. Scientific Reports, 2017, 7, 896.	3.3	7
242	Seven myths of memory. Behavioural Processes, 2018, 152, 3-9.	1.1	7
243	Reflections on the spoon test. Neuropsychologia, 2019, 134, 107221.	1.6	7
244	Where was I? Taking alternative visual perspectives can make us (briefly) misplace our own. Quarterly Journal of Experimental Psychology, 2020, 73, 468-477.	1.1	7
245	Decision-making flexibility in New Caledonian crows, young children and adult humans in a multi-dimensional tool-use task. PLoS ONE, 2020, 15, e0219874.	2.5	7
246	Egocentric bias across mental and non-mental representations in the Sandbox Task. Quarterly Journal of Experimental Psychology, 2018, 71, 2395-2410.	1.1	7
247	A case of mental time travel in ant-following birds?. Behavioral Ecology, 2011, 22, 1149-1153.	2.2	6
248	Exploring the perceptual inabilities of Eurasian jays (<i>Garrulus glandarius</i>) using magic effects. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
249	Little evidence that Eurasian jays protect their caches by responding to cues about a conspecific's desire and visual perspective. ELife, 2021, 10, .	6.0	6
250	Episodic Memory and Planning. , 0, , 217-235.		6
251	Eurasian jays do not copy the choices of conspecifics, but they do show evidence of stimulus enhancement. PeerJ, 2016, 4, e2746.	2.0	6
252	Imaginative scrub-jays, causal rooks, and a liberal application of Occam's aftershave. Behavioral and Brain Sciences, 2008, 31, 134-135.	0.7	5

#	Article	IF	CITATIONS
253	Translational research into intertemporal choice: The Western scrub-jay as an animal model for future-thinking. Behavioural Processes, 2015, 112, 43-48.	1.1	5
254	California scrub-jays reduce visual cues available to potential pilferers by matching food colour to caching substrate. Biology Letters, 2017, 13, 20170242.	2.3	5
255	What is the role of episodic foresight in planning for future needs? Theory and two experiments. Quarterly Journal of Experimental Psychology, 2019, 72, 1961-1976.	1.1	5
256	Testing two competing hypotheses for Eurasian jays' caching for the future. Scientific Reports, 2021, 11, 835.	3.3	5
257	The hidden side of animal cognition research: Scientists' attitudes toward bias, replicability and scientific practice. PLoS ONE, 2021, 16, e0256607.	2.5	5
258	The Ape That Lived to Tell the Tale. The Evolution of the Art of Storytelling and Its Relationship to Mental Time Travel and Theory of Mind. Frontiers in Psychology, 2021, 12, 755783.	2.1	5
259	No conclusive evidence that corvids can create novel causal interventions. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150796.	2.6	4
260	Experimenter expectancy bias does not explain Eurasian jays' (Garrulus glandarius) performance in a desire-state attribution task Journal of Comparative Psychology (Washington, D C: 1983), 2016, 130, 407-410.	0.5	4
261	Exploring the relative contributions of reward-history and functionality information to children's acquisition of the Aesop's fable task. PLoS ONE, 2018, 13, e0193264.	2.5	4
262	Tricks of the mind. Current Biology, 2019, 29, R349-R350.	3.9	4
263	Lateralization in Memory and the Avian Hippocampus in Food-Storing Birds. , 1995, , 139-157.		4
264	Neural circuits and behaviour: developmental and evolutionary perspectives. Current Opinion in Neurobiology, 2005, 15, 683-685.	4.2	3
265	Translating cognitive insights into effective conservation programs: Reply to Schakner et al Trends in Ecology and Evolution, 2014, 29, 652-653.	8.7	3
266	Route-planning and the comparative study of future-thinking. Frontiers in Psychology, 2015, 6, 144.	2.1	3
267	The unreliability of egocentric bias across self–other and memory–belief distinctions in the Sandbox Task. Royal Society Open Science, 2018, 5, 181355.	2.4	3
268	A novel test of flexible planning in relation to executive function and language in young children. Royal Society Open Science, 2020, 7, 192015.	2.4	3
269	Reduced egocentric bias when perspective-taking compared with working from rules. Quarterly Journal of Experimental Psychology, 2020, 73, 1368-1381.	1.1	3
270	Difficulties when using video playback to investigate social cognition in California scrub-jays (<i>Aphelocoma californica)</i> . PeerJ, 2018, 6, e4451.	2.0	3

0

#	Article	IF	CITATIONS
271	Investigating expert performance when observing magic effects. Scientific Reports, 2022, 12, 5141.	3.3	3
272	New Caledonian crows' planning behaviour: a reply to de Mahy et al Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211271.	2.6	2
273	Evolutionary Perspectives on Prospective Cognition. , 2016, , 287-305.		2
274	Prospective Decision Making in Animals: A Potential Role for Intertemporal Choice in the Study of Prospective Cognition. , 2011, , 325-343.		2
275	Young children do not require perceptual-motor feedback to solve Aesop's Fable tasks. PeerJ, 2017, 5, e3484.	2.0	2
276	Mirror-mediated string-pulling task in Eurasian jays (Garrulus glandarius). Animal Cognition, 2021, , 1.	1.8	2
277	Response to Francis: Puzzles are a challenge, not a frustration. Trends in Ecology and Evolution, 2005, 20, 477.	8.7	1
278	Can jackdaws (<i>Corvus monedula</i>) select individuals based on their ability to help?. Interaction Studies, 2011, 12, 262-280.	0.6	1
279	Episodic-Like Memory in Food-Caching Birds. , 2012, , 1159-1162.		1
280	Investigation of mirror-self recognition in ravens (Corvus corax) Journal of Comparative Psychology (Washington, D C: 1983), 2022, 136, 194-198.	0.5	1
281	Chapter 4.2 What animals remember about past events: an ethological approach. Handbook of Behavioral Neuroscience, 1999, 13, 614-626.	0.0	0
282	Corvid CachingThe Role of Cognition. , 2012, , .		0
283	Animal acumen <i>Are We Smart Enough to Know How Smart Animals Are?</i> <i>Frans de Waal</i> Norton, 2016. 352 pp Science, 2016, 352, 525-525.	12.6	0
284	Morgan's canon is not evidence. Behavioral and Brain Sciences, 2018, 41, e31.	0.7	0
285	Commentary: A Conserved Role for Serotonergic Neurotransmission in Mediating Social Behavior in Octopus. Frontiers in Behavioral Neuroscience, 2019, 13, 185.	2.0	0
286	The mental lives of parrots. Current Biology, 2020, 30, R378-R379.	3.9	0
287	Planning in Birds. , 2012, , 2643-2644.		0

#	Article	IF	CITATIONS
289	Theory of Mind. , 2018, , 1-12.		0
290	Episodic Memory. , 2019, , 1-13.		0
291	Title is missing!. , 2020, 15, e0219874.		0
292	Title is missing!. , 2020, 15, e0219874.		0
293	Title is missing!. , 2020, 15, e0219874.		0
294	Title is missing!. , 2020, 15, e0219874.		0
295	Episodic Memory. , 2022, , 2364-2376.		0
296	Nicola Clayton. , 2022, , 4666-4669.		0
297	Theory of Mind. , 2022, , 6957-6968.		0
298	Evolutionary Origins of Complex Cognition. , 2022, , 317-338.		0