Jennifer C Fletcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8059514/publications.pdf

Version: 2024-02-01

53	6,051	35	52
papers	citations	h-index	g-index
103	103 does citations	103	5481
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Dependence of Stem Cell Fate in Arabidopsis on a Feedback Loop Regulated by CLV3 Activity. Science, 2000, 289, 617-619.	6.0	1,021
2	Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics, 2005, 6, 688-698.	7.7	533
3	The E3 Ubiquitin Ligase BIG BROTHER Controls Arabidopsis Organ Size in a Dosage-Dependent Manner. Current Biology, 2006, 16, 272-279.	1.8	310
4	CLV3 Is Localized to the Extracellular Space, Where It Activates the Arabidopsis CLAVATA Stem Cell Signaling Pathway. Plant Cell, 2002, 14, 969-977.	3.1	305
5	A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9703-9708.	3.3	276
6	Molecular Analysis of the Initiation of Insect Metamorphosis: A Comparative Study of Drosophila Ecdysteroid-Regulated Transcription. Developmental Biology, 1993, 160, 388-404.	0.9	260
7	Shoot apical meristem maintenance: the art of a dynamic balance. Trends in Plant Science, 2003, 8, 394-401.	4.3	197
8	GASA4, One of the 14-Member Arabidopsis GASA Family of Small Polypeptides, Regulates Flowering and Seed Development. Plant and Cell Physiology, 2007, 48, 471-483.	1.5	177
9	BLADE-ON-PETIOLE1 Encodes a BTB/POZ Domain Protein Required for Leaf Morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology, 2004, 45, 1361-1370.	1.5	165
10	BLADE-ON-PETIOLE1 and 2 Control Arabidopsis Lateral Organ Fate through Regulation of LOB Domain and Adaxial-Abaxial Polarity Genes. Plant Cell, 2007, 19, 1809-1825.	3.1	162
11	HANABA TARANU Is a GATA Transcription Factor That Regulates Shoot Apical Meristem and Flower Development in Arabidopsis[W]. Plant Cell, 2004, 16, 2586-2600.	3.1	159
12	Comprehensive Analysis of <i>CLE </i> Polypeptide Signaling Gene Expression and Overexpression Activity in Arabidopsis. Plant Physiology, 2010, 154, 1721-1736.	2.3	154
13	Proper regulation of a sperm-specific <i>cis</i> -nat-siRNA is essential for double fertilization in <i>Arabidopsis</i> . Genes and Development, 2010, 24, 1010-1021.	2.7	152
14	SHOOT ANDFLORALMERISTEMMAINTENANCE INARABIDOPSIS. Annual Review of Plant Biology, 2002, 53, 45-66.	8.6	141
15	Stem cell regulation in the Arabidopsis shoot apical meristem. Current Opinion in Plant Biology, 2005, 8, 582-586.	3.5	140
16	The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins. Plant Molecular Biology, 2003, 51, 415-425.	2.0	134
17	RABBIT EARSis a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant Journal, 2006, 45, 369-383.	2.8	130
18	The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants. Genes and Development, 2009, 23, 2723-2728.	2.7	126

#	Article	IF	CITATIONS
19	BLADE-ON-PETIOLE1 Coordinates Organ Determinacy and Axial Polarity in <i>Arabidopsis</i> by Directly Activating ASYMMETRIC LEAVES2 Â. Plant Cell, 2010, 22, 62-76.	3.1	119
20	Cell signaling within the shoot meristem. Current Opinion in Plant Biology, 2000, 3, 23-30.	3.5	105
21	Regulation of <i>Arabidopsis</i> Embryo and Endosperm Development by the Polypeptide Signaling Molecule CLE8. Plant Cell, 2012, 24, 1000-1012.	3.1	105
22	ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development (Cambridge), 2005, 132, 897-911.	1.2	101
23	Shoot Apical Meristem Form and Function. Current Topics in Developmental Biology, 2010, 91, 103-140.	1.0	93
24	Recent Advances in Arabidopsis CLE Peptide Signaling. Trends in Plant Science, 2020, 25, 1005-1016.	4.3	87
25	The ERECTA receptor kinase regulates <i>Arabidopsis</i> shoot apical meristem size, phyllotaxy and floral meristem identity. Development (Cambridge), 2014, 141, 830-841.	1.2	84
26	The CLV-WUS Stem Cell Signaling Pathway: A Roadmap to Crop Yield Optimization. Plants, 2018, 7, 87.	1.6	81
27	The ULTRAPETALA1 Gene Functions Early in Arabidopsis Development to Restrict Shoot Apical Meristem Activity and Acts Through WUSCHEL to Regulate Floral Meristem Determinacy. Genetics, 2004, 167, 1893-1903.	1.2	78
28	Overlapping and antagonistic activities of <i>BASIC PENTACYSTEINE</i> genes affect a range of developmental processes in Arabidopsis. Plant Journal, 2011, 66, 1020-1031.	2.8	72
29	The Roles of Different CLE Domains in Arabidopsis CLE Polypeptide Activity and Functional Specificity. Molecular Plant, 2010, 3, 760-772.	3.9	66
30	Polypeptide signaling molecules in plant development. Current Opinion in Plant Biology, 2015, 23, 8-14.	3.5	55
31	Control of Arabidopsis Leaf Morphogenesis Through Regulation of the <i>YABBY</i> and <i>KNOX</i> Families of Transcription Factors. Genetics, 2010, 186, 197-206.	1.2	47
32	Trithorax Group Proteins Act Together with a Polycomb Group Protein to Maintain Chromatin Integrity for Epigenetic Silencing during Seed Germination in Arabidopsis. Molecular Plant, 2018, 11, 659-677.	3.9	47
33	EMBRYONIC FLOWER1 and ULTRAPETALA1 Act Antagonistically on Arabidopsis Development and Stress Response Â. Plant Physiology, 2013, 162, 812-830.	2.3	42
34	Coordination of cell proliferation and cell fate decisions in the angiosperm shoot apical meristem. BioEssays, 2002, 24, 27-37.	1.2	36
35	Maintenance of Shoot and Floral Meristem Cell Proliferation and Fate. Plant Physiology, 2002, 129, 31-39.	2.3	35
36	The ULT1 and ULT2 trxG Genes Play Overlapping Roles in Arabidopsis Development and Gene Regulation. Molecular Plant, 2013, 6, 1564-1579.	3.9	32

#	Article	lF	Citations
37	State of the Art: trxG Factor Regulation of Post-embryonic Plant Development. Frontiers in Plant Science, 2017, 8, 1925.	1.7	30
38	A Genetic Screen for Modifiers of UFO Meristem Activity Identifies Three Novel FUSED FLORAL ORGANS Genes Required for Early Flower Development in Arabidopsis. Genetics, 1998, 149, 579-595.	1.2	27
39	<i>ULTRAPETALA</i> trxG Genes Interact with <i>KANADI</i> Transcription Factor Genes to Regulate <i>Arabidopsis</i> Gynoecium Patterning Â. Plant Cell, 2014, 26, 4345-4361.	3.1	25
40	Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development. Plant and Cell Physiology, 2015, 56, 1855-1866.	1.5	20
41	Peptide signaling molecules <scp>CLE</scp> 5 and <scp>CLE</scp> 6 affect Arabidopsis leaf shape downstream of leaf patterning transcription factors and auxin. Plant Direct, 2018, 2, e00103.	0.8	19
42	ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem. Annals of Botany, 2014, 114, 1497-1505.	1.4	18
43	Missing links between histones and RNA Pol II arising from SAND?. Epigenetics, 2010, 5, 381-385.	1.3	16
44	A group of <scp>CLE</scp> peptides regulates <i>de novo</i> shoot regeneration in <i>Arabidopsis thaliana</i> . New Phytologist, 2022, 235, 2300-2312.	3.5	15
45	Analyzing Shoot Apical Meristem Development. Methods in Molecular Biology, 2010, 655, 105-129.	0.4	12
46	The signaling peptide-encoding genes CLE16, CLE17 and CLE27 are dispensable for Arabidopsis shoot apical meristem activity. PLoS ONE, 2018, 13, e0202595.	1.1	10
47	The Trithorax Group Factor ULTRAPETALA1 Regulates Developmental as Well as Biotic and Abiotic Stress Response Genes in Arabidopsis. G3: Genes, Genomes, Genetics, 2019, 9, 4029-4043.	0.8	10
48	The essential gene <i>EMB1611</i> maintains shoot apical meristem function during Arabidopsis development. Plant Journal, 2009, 57, 579-592.	2.8	5
49	CLE peptide-mediated signaling in shoot and vascular meristem development. Frontiers in Biology, 2017, 12, 406-420.	0.7	5
50	Signaling peptides direct the art of rebirth. Trends in Plant Science, 2022, , .	4.3	5
51	CLE polypeptide signaling gene expression in Arabidopsis embryos. Plant Signaling and Behavior, 2011, 6, 443-444.	1.2	4
52	The ULTRAPETALA1 trxG factor contributes to patterning the Arabidopsis adaxial-abaxial leaf polarity axis. Plant Signaling and Behavior, 2015, 10, e1034422.	1.2	3
53	The ULT trxG factors play a role in arabidopsis fertilization. Plant Signaling and Behavior, 2014, 9, e977723.	1.2	0