Rick Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8059196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological Enhancement of Extinction Retention in Non-stressed Adolescent Rats but Not Those Exposed to Chronic Corticosterone. Frontiers in Neuroscience, 2022, 16, 822709.	2.8	2
2	Adults who are more anxious and were anxiously attached as children report later first memories. British Journal of Psychology, 2022, 113, 455-478.	2.3	0
3	Does maternal separation accelerate maturation of perineuronal nets and parvalbumin-containing inhibitory interneurons in male and female rats?. Developmental Cognitive Neuroscience, 2021, 47, 100905.	4.0	9
4	lt's all about who you know: Memory retention of a rat's cagemates during infancy negatively predicts adulthood hippocampal FGF2. Neurobiology of Learning and Memory, 2021, 182, 107448.	1.9	2
5	Maternal care, infant fear memory retention, and the moderating role of variations in separationâ€induced ultrasonic vocalizations. Developmental Psychobiology, 2021, 63, e22177.	1.6	4
6	Fear extinction learning and retention during adolescence in rats and mice: A systematic review. Neuroscience and Biobehavioral Reviews, 2021, 131, 1264-1274.	6.1	7
7	Maternal Experience Does Not Predict Fear Extinction and Anxiety-Like Behaviour in Primiparous Rats Post-weaning. Frontiers in Clobal Women S Health, 2021, 2, 742337.	2.3	5
8	Developmental differences in the effects of CB1/2R agonist WIN55212-2 on extinction of learned fear. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 99, 109834.	4.8	10
9	Deficits in opioid receptor-mediated prediction error contribute to impaired fear extinction during adolescence. Behaviour Research and Therapy, 2020, 133, 103713.	3.1	4
10	Is good memory always a good thing? An early offset of infantile amnesia predicts anxiety-like behavior throughout development in rats. Behaviour Research and Therapy, 2020, 135, 103763.	3.1	5
11	Esketamine as a treatment for paediatric depression: questions of safety and efficacy. Lancet Psychiatry,the, 2020, 7, 827-829.	7.4	16
12	Earlyâ€life stress leads to sexâ€dependent changes in pubertal timing in rats that are reversed by a probiotic formulation. Developmental Psychobiology, 2019, 61, 679-687.	1.6	47
13	A precision medicine approach to pharmacological adjuncts to extinction: a call to broaden research. Psychopharmacology, 2019, 236, 143-161.	3.1	4
14	Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Developmental Cognitive Neuroscience, 2019, 37, 100627.	4.0	58
15	Maturational Changes in Prefrontal and Amygdala Circuits in Adolescence: Implications for Understanding Fear Inhibition during a Vulnerable Period of Development. Brain Sciences, 2019, 9, 65.	2.3	65
16	Fibroblast growth factor-2 enhancement of extinction recall depends on the success of within-session extinction training in rats: a re-analysis. Psychopharmacology, 2019, 236, 227-238.	3.1	2
17	The effects of early life stress on context fear generalization in adult rats Behavioral Neuroscience, 2019, 133, 50-58.	1.2	7
18	Brief isolation during infancy enhances the formation of long-term memories in infant rodents Behavioral Neuroscience, 2019, 133, 437-447.	1.2	0

#	Article	IF	CITATIONS
19	Timing is everything: Developmental differences in the effect of chronic corticosterone exposure on extinction retention Behavioral Neuroscience, 2019, 133, 467-477.	1.2	3
20	Elucidating the mechanisms of fear extinction in developing animals: a special case of NMDA receptor-independent extinction in adolescent rats. Learning and Memory, 2018, 25, 158-164.	1.3	6
21	Effects of d -cycloserine on individual differences in relapse of fear. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 115-121.	4.8	6
22	Ghosts of mother's past: Previous maternal stress leads to altered maternal behavior following a subsequent pregnancy in rats. Developmental Psychobiology, 2018, 60, 278-291.	1.6	4
23	A Brief Guide to Studying Fear in Developing Rodents: Important Considerations and Common Pitfalls. Current Protocols in Neuroscience, 2018, 83, e44.	2.6	10
24	T14. Individual Differences in Extinction and Relapse: Who, Why, and What Can We Do?. Biological Psychiatry, 2018, 83, S134.	1.3	1
25	Behavioral tagging in infant rats. Learning and Memory, 2018, 25, 580-586.	1.3	6
26	The impact of chronic fluoxetine on conditioned fear expression and hippocampal FGF2 in rats: Short- and long-term effects. Neurobiology of Learning and Memory, 2018, 155, 344-350.	1.9	8
27	Differences in the persistence of spatial memory deficits induced by a chronic stressor in adolescents compared to juveniles. Developmental Psychobiology, 2018, 60, 805-813.	1.6	6
28	d-Cycloserine facilitates fear extinction in adolescent rats and differentially affects medial and lateral prefrontal cortex activation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 86, 262-269.	4.8	10
29	S33. The Effects of Early Life Stress on Fear Generalisation. Biological Psychiatry, 2018, 83, S359-S360.	1.3	0
30	Individual differences in fear extinction and anxiety-like behavior. Learning and Memory, 2017, 24, 182-190.	1.3	17
31	The relative effectiveness of extinction and counter-conditioning in diminishing children's fear. Behaviour Research and Therapy, 2017, 95, 42-49.	3.1	31
32	Low Endogenous Fibroblast Growth Factor 2ÂLevels Are Associated With Heightened Conditioned Fear Expression in Rats and Humans. Biological Psychiatry, 2017, 82, 601-607.	1.3	17
33	653. Can What Goes up Come Back Down? The Effects of DCS on Individual Differences in Relapse of Fear. Biological Psychiatry, 2017, 81, S264-S265.	1.3	Ο
34	832. Timing is Everything: Developmental Differences in the Effect of Chronic Stress on Extinction in Adolescent Rats. Biological Psychiatry, 2017, 81, S337.	1.3	1
35	Pharmacological evidence that a failure to recruit NMDA receptors contributes to impaired fear extinction retention in adolescent rats. Neurobiology of Learning and Memory, 2017, 143, 18-26.	1.9	15
36	The development of perineuronal nets around parvalbumin gabaergic neurons in the medial prefrontal cortex and basolateral amygdala of rats Behavioral Neuroscience, 2017, 131, 289-303.	1.2	57

#	Article	IF	CITATIONS
37	Impaired fear extinction in adolescent rodents: Behavioural and neural analyses. Neuroscience and Biobehavioral Reviews, 2016, 70, 59-73.	6.1	43
38	A mother's past can predict her offspring's future: Previous maternal separation leads to the early emergence of adult-like fear behavior in subsequent male infant rat offspring Behavioral Neuroscience, 2016, 130, 511-520.	1.2	8
39	Individual differences in conditioned fear expression are associated with enduring differences in endogenous Fibroblast Growth Factor-2 and hippocampal-mediated memory performance. Neurobiology of Learning and Memory, 2016, 134, 248-255.	1.9	15
40	Treating Generational Stress. Psychological Science, 2016, 27, 1171-1180.	3.3	47
41	Habituation and extinction of fear recruit overlapping forebrain structures. Neurobiology of Learning and Memory, 2016, 128, 7-16.	1.9	29
42	Individual differences in the expression of conditioned fear are associated with endogenous fibroblast growth factor 2. Learning and Memory, 2016, 23, 42-45.	1.3	13
43	Effects of early-life stress on fear memory in the developing rat. Current Opinion in Behavioral Sciences, 2016, 7, 15-20.	3.9	7
44	Teens that fear screams: A comparison of fear conditioning, extinction, and reinstatement in adolescents and adults. Developmental Psychobiology, 2015, 57, 818-832.	1.6	33
45	D-CYCLOSERINE ENHANCES GENERALIZATION OF FEAR EXTINCTION IN CHILDREN. Depression and Anxiety, 2015, 32, 408-414.	4.1	31
46	Forming competing fear learning and extinction memories in adolescence makes fear difficult to inhibit. Learning and Memory, 2015, 22, 537-543.	1.3	41
47	Fibroblast Growth Factor 2 as a New Approach to Fighting Fear. JAMA Psychiatry, 2015, 72, 959.	11.0	8
48	Relearning a context-shock association after forgetting is an NMDAr-independent process. Physiology and Behavior, 2015, 148, 29-35.	2.1	11
49	A comparison of the short- and long-term effects of corticosterone exposure on extinction in adolescence versus adulthood Behavioral Neuroscience, 2014, 128, 722-735.	1.2	13
50	Early emergence of adult-like fear renewal in the developing rat after chronic corticosterone treatment of the dam or the pups Behavioral Neuroscience, 2014, 128, 594-602.	1.2	29
51	A window of vulnerability: Impaired fear extinction in adolescence. Neurobiology of Learning and Memory, 2014, 113, 90-100.	1.9	55
52	Infantile amnesia: forgotten but not gone. Learning and Memory, 2014, 21, 135-139.	1.3	36
53	Bridging the gap: Lessons we have learnt from the merging of psychology and psychiatry for the optimisation of treatments for emotional disorders. Behaviour Research and Therapy, 2014, 62, 3-16.	3.1	74
54	The elusive engram: what can infantile amnesia tell us about memory?. Trends in Neurosciences, 2014, 37, 47-53.	8.6	40

#	Article	IF	CITATIONS
55	Early experiences and the development of emotional learning systems in rats. Biology of Mood & Anxiety Disorders, 2013, 3, 8.	4.7	45
56	Enhanced sensitivity to learning fearful associations during adolescence. Neurobiology of Learning and Memory, 2013, 104, 92-102.	1.9	8
57	Memory retrieval before or after extinction reduces recovery of fear in adolescent rats. Learning and Memory, 2013, 20, 467-473.	1.3	67
58	Acute early-life stress results in premature emergence of adult-like fear retention and extinction relapse in infant rats Behavioral Neuroscience, 2013, 127, 703-711.	1.2	46
59	The role of focus of attention and reappraisal in prolonging the negative effects of ostracism Group Dynamics, 2013, 17, 110-123.	1.2	15
60	Traces of memory: Reacquisition of fear following forgetting is NMDAr-independent. Learning and Memory, 2013, 20, 174-182.	1.3	21
61	Reversing the negative psychological sequelae of exclusion: Inclusion is ameliorative but not protective against the aversive consequences of exclusion Emotion, 2013, 13, 139-150.	1.8	43
62	Internalising Problems and the Effects of Peer Ostracism on Children's Primary Needs. International Journal of Developmental Sciences, 2013, 7, 41-45.	0.5	5
63	From Resilience to Vulnerability: Mechanistic Insights into the Effects of Stress on Transitions in Critical Period Plasticity. Frontiers in Psychiatry, 2013, 4, 90.	2.6	37
64	Ventral Hippocampal Kappa Opioid Receptors Mediate the Renewal of Fear following Extinction in the Rat. PLoS ONE, 2013, 8, e58701.	2.5	11
65	Differential involvement of the medial prefrontal cortex in the expression of learned fear across development Behavioral Neuroscience, 2012, 126, 217-225.	1.2	43
66	d-cycloserine does not facilitate fear extinction by reducing conditioned stimulus processing or promoting conditioned inhibition to contextual cues. Learning and Memory, 2012, 19, 461-469.	1.3	16
67	The effects of peer ostracism on children's cognitive processes. European Journal of Developmental Psychology, 2012, 9, 599-613.	1.8	62
68	The effect of adverse rearing environments on persistent memories in young rats: removing the brakes on infant fear memories. Translational Psychiatry, 2012, 2, e138-e138.	4.8	84
69	Early-life stress affects extinction during critical periods of development: An analysis of the effects of maternal separation on extinction in adolescent rats. Stress, 2012, 15, 671-679.	1.8	33
70	Treating disgust in anxiety disorders Clinical Psychology: Science and Practice, 2012, 19, 180-194.	0.9	57
71	Phosphorylation of mitogen-activated protein kinase in the medial prefrontal cortex and the amygdala following memory retrieval or forgetting in developing rats. Neurobiology of Learning and Memory, 2012, 97, 59-68.	1.9	39
72	Renewal and reinstatement of the conditioned but not the unconditioned response following habituation of the unconditioned stimulus. Behavioural Processes, 2012, 90, 58-65.	1.1	14

#	Article	IF	CITATIONS
73	Updating memories: Changing the involvement of the prelimbic cortex in the expression of an infant fear memory. Neuroscience, 2012, 222, 316-325.	2.3	13
74	Age-related changes in the effect of ostracism. Social Influence, 2011, 6, 22-38.	1.6	74
75	Memory of fearful events: the role of fibroblast growth factor-2 in fear acquisition and extinction. Neuroscience, 2011, 189, 156-169.	2.3	37
76	Pharmacological enhancement of fear reduction: preclinical models. British Journal of Pharmacology, 2011, 164, 1230-1247.	5.4	47
77	Maternal separation results in early emergence of adult-like fear and extinction learning in infant rats Behavioral Neuroscience, 2011, 125, 20-28.	1.2	132
78	Kappa opioid receptors mediate where fear is expressed following extinction training. Learning and Memory, 2011, 18, 88-95.	1.3	15
79	Immunohistochemical Analyses of Long-Term Extinction of Conditioned Fear in Adolescent Rats. Cerebral Cortex, 2011, 21, 530-538.	2.9	129
80	Intraamygdala Infusion of Fibroblast Growth Factor 2 Enhances Extinction and Reduces Renewal and Reinstatement in Adult Rats. Journal of Neuroscience, 2011, 31, 14151-14157.	3.6	24
81	Fibroblast growth factor-2 alters the nature of extinction. Learning and Memory, 2011, 18, 80-84.	1.3	19
82	Early-life exposure to fibroblast growth factor-2 facilitates context-dependent long-term memory in developing rats Behavioral Neuroscience, 2010, 124, 337-345.	1.2	23
83	Fibroblast Growth Factor-2 Enhances Extinction and Reduces Renewal of Conditioned Fear. Neuropsychopharmacology, 2010, 35, 1348-1355.	5.4	43
84	Erasing Fear Memories with Extinction Training: Figure 1 Journal of Neuroscience, 2010, 30, 14993-14997.	3.6	206
85	New Findings on Extinction of Conditioned Fear Early in Development: Theoretical and Clinical Implications. Biological Psychiatry, 2010, 67, 297-303.	1.3	172
86	Looking beyond fear: The extinction of other emotions implicated in anxiety disorders. Journal of Anxiety Disorders, 2010, 24, 63-70.	3.2	99
87	The temporal specificity of the switch from NMDAr-dependent extinction to NMDAr-independent re-extinction. Behavioural Brain Research, 2010, 208, 646-649.	2.2	17
88	US habituation, like CS extinction, produces a decrement in conditioned fear responding that is NMDA dependent and subject to renewal and reinstatement. Neurobiology of Learning and Memory, 2010, 93, 463-471.	1.9	41
89	Extinction in preweanling rats does not involve NMDA receptors. Neurobiology of Learning and Memory, 2010, 94, 176-182.	1.9	32
90	Impaired Extinction Retention in Adolescent Rats: Effects of D-Cycloserine. Neuropsychopharmacology, 2010, 35, 2134-2142.	5.4	175

#	Article	IF	CITATIONS
91	The effect of D-cycloserine on immediate vs. delayed extinction of learned fear. Learning and Memory, 2010, 17, 547-551.	1.3	21
92	The effect of the Â-opioid receptor antagonist naloxone on extinction of conditioned fear in the developing rat. Learning and Memory, 2009, 16, 161-166.	1.3	33
93	Acute Systemic Fibroblast Growth Factor-2 Enhances Long-Term Extinction of Fear and Reduces Reinstatement in Rats. Neuropsychopharmacology, 2009, 34, 1875-1882.	5.4	44
94	Fear Extinction across Development: The Involvement of the Medial Prefrontal Cortex as Assessed by Temporary Inactivation and Immunohistochemistry. Journal of Neuroscience, 2009, 29, 10802-10808.	3.6	153
95	Acute systemic fibroblast growth factor-2 enhances long-term memory in developing rats. Neurobiology of Learning and Memory, 2009, 91, 424-430.	1.9	22
96	A developmental dissociation in compound summation following extinction. Neurobiology of Learning and Memory, 2009, 92, 80-88.	1.9	4
97	The role of context in the re-extinction of learned fear. Neurobiology of Learning and Memory, 2009, 92, 496-503.	1.9	28
98	Ostracism: How much it hurts depends on how you remember it Emotion, 2009, 9, 430-434.	1.8	53
99	Expression of renewal is dependent on the extinction-test interval rather than the acquisition-extinction interval Behavioral Neuroscience, 2009, 123, 641-649.	1.2	22
100	A Randomized Controlled Trial of D-Cycloserine Enhancement of Exposure Therapy for Social Anxiety Disorder. Biological Psychiatry, 2008, 63, 544-549.	1.3	316
101	GABA _A receptors determine the temporal dynamics of memory retention. Learning and Memory, 2008, 15, 106-111.	1.3	6
102	The Effect of Temporary Amygdala Inactivation on Extinction and Reextinction of Fear in the Developing Rat: Unlearning as a Potential Mechanism for Extinction Early in Development. Journal of Neuroscience, 2008, 28, 1282-1290.	3.6	98
103	D-Cycloserine Facilitates Extinction the First Time but not the Second Time: An Examination of the Role of NMDA Across the Course of Repeated Extinction Sessions. Neuropsychopharmacology, 2008, 33, 3096-3102.	5.4	59
104	You Can't Take It With You. Current Directions in Psychological Science, 2007, 16, 223-227.	5.3	13
105	The effect of the NMDA receptor antagonist MK-801 on the acquisition and extinction of learned fear in the developing rat. Learning and Memory, 2007, 14, 665-668.	1.3	72
106	The ontogeny of fear-potentiated startle: Effects of earlier-acquired fear memories Behavioral Neuroscience, 2007, 121, 1053-1062.	1.2	10
107	A developmental dissociation of context and GABA effects on extinguished fear in rats Behavioral Neuroscience, 2007, 121, 131-139.	1.2	109
108	Immediate post-reminder injection of gamma-amino butyric acid (GABA) agonist midazolam attenuates reactivation of forgotten fear in the infant rat Behavioral Neuroscience, 2007, 121, 1328-1332.	1.2	24

#	Article	IF	CITATIONS
109	The effects of FG7142 on two types of forgetting in 18-day-old rats Behavioral Neuroscience, 2007, 121, 1421-1425.	1.2	26
110	Pharmacological dissociation of trace and long-delay fear conditioning in young rats. Neurobiology of Learning and Memory, 2007, 87, 86-92.	1.9	22
111	Effects of d-cycloserine on extinction of learned fear to an olfactory cue. Neurobiology of Learning and Memory, 2007, 87, 476-482.	1.9	78
112	A developmental dissociation in reinstatement of an extinguished fear response in rats. Neurobiology of Learning and Memory, 2007, 88, 48-57.	1.9	102
113	A randomized controlled trial of the effect of d-cycloserine on extinction and fear conditioning in humans. Behaviour Research and Therapy, 2007, 45, 663-672.	3.1	99
114	Effects of D-Cycloserine on Extinction: Consequences of Prior Exposure to Imipramine. Biological Psychiatry, 2007, 62, 1195-1197.	1.3	44
115	Extinction in the developing rat: An examination of renewal effects. Developmental Psychobiology, 2007, 49, 565-575.	1.6	72
116	Synapses, circuits, and the ontogeny of learning. Developmental Psychobiology, 2007, 49, 649-663.	1.6	18
117	A randomized controlled trial of the effect of d-cycloserine on exposure therapy for spider fear. Journal of Psychiatric Research, 2007, 41, 466-471.	3.1	142
118	Effects of D-Cycloserine on Extinction: Translation From Preclinical to Clinical Work. Biological Psychiatry, 2006, 60, 369-375.	1.3	472
119	How long does it last? The persistence of the effects of ostracism in the socially anxious. Journal of Experimental Social Psychology, 2006, 42, 692-697.	2.2	265
120	Carbachol injections into the nucleus accumbens disrupt acquisition and expression of fear-potentiated startle and freezing in rats. Neuroscience, 2006, 140, 769-778.	2.3	14
121	Opioid receptors regulate retrieval of infant fear memories: Effects of naloxone on infantile amnesia Behavioral Neuroscience, 2006, 120, 702-709.	1.2	22
122	Loss of emotional experience after traumatic brain injury: Findings with the startle probe procedure Neuropsychology, 2006, 20, 224-231.	1.3	54
123	Recovery of fear memories in rats: Role of gamma-amino butyric acid (GABA) in infantile amnesia Behavioral Neuroscience, 2006, 120, 40-48.	1.2	51
124	Latent inhibition in the developing rat: An examination of context-specific effects. Developmental Psychobiology, 2005, 47, 55-65.	1.6	26
125	Behavioral expression of learned fear: Updating of early memories Behavioral Neuroscience, 2005, 119, 1467-1476.	1.2	17
126	Riding the â€~O' Train: Comparing the Effects of Ostracism and Verbal Dispute on Targets and Sources. Group Processes and Intergroup Relations, 2005, 8, 125-143.	3.9	111

#	Article	IF	CITATIONS
127	Effects of multiple exposures to d-cycloserine on extinction of conditioned fear in rats. Neurobiology of Learning and Memory, 2005, 83, 224-231.	1.9	140
128	d-cycloserine facilitates extinction of learned fear: Effects on reacquisition and generalized extinction. Biological Psychiatry, 2005, 57, 841-847.	1.3	217
129	Facilitation of Fear Extinction by D-Cycloserine: Theoretical and Clinical Implications. Learning and Memory, 2004, 11, 510-516.	1.3	165
130	Temporary inactivation of the perirhinal cortex by muscimol injections block acquisition and expression of fear-potentiated startle. European Journal of Neuroscience, 2004, 19, 713-720.	2.6	20
131	Temporary inactivation of the nucleus accumbens disrupts acquisition and expression of fear-potentiated startle in rats. Brain Research, 2004, 1027, 87-93.	2.2	47
132	How low can you go? Ostracism by a computer is sufficient to lower self-reported levels of belonging, control, self-esteem, and meaningful existence. Journal of Experimental Social Psychology, 2004, 40, 560-567.	2.2	862
133	D-Cycloserine and the Facilitation of Extinction of Conditioned Fear: Consequences for Reinstatement Behavioral Neuroscience, 2004, 118, 505-513.	1.2	181
134	Pretraining Inactivation of the Caudal Pontine Reticular Nucleus Impairs the Acquisition of Conditioned Fear-Potentiated Startle to an Odor, but Not a Light Behavioral Neuroscience, 2004, 118, 965-974.	1.2	8
135	Latent inhibition of conditioned odor potentiation of startle: A developmental analysis. Developmental Psychobiology, 2003, 42, 261-268.	1.6	10
136	Effects of an odor paired with illness on startle, freezing, and analgesia in rats. Physiology and Behavior, 2003, 78, 213-219.	2.1	16
137	Effects of D-cycloserine on extinction of conditioned freezing Behavioral Neuroscience, 2003, 117, 341-349.	1.2	373
138	High Illumination Levels Potentiate the Acoustic Startle Response in Preweanling Rats Behavioral Neuroscience, 2003, 117, 1458-1462.	1.2	5
139	Reinstatement of fear to an extinguished conditioned stimulus: Two roles for context Journal of Experimental Psychology, 2002, 28, 97-110.	1.7	95
140	Extinction of Conditioned Odor Potentiation of Startle. Neurobiology of Learning and Memory, 2002, 78, 426-440.	1.9	20
141	Behavioral expression of learned fear in rats is appropriate to their age at training, not their age at testing. Learning and Behavior, 2002, 30, 394-404.	3.4	25
142	Reinstatement of fear to an extinguished conditioned stimulus: two roles for context. Journal of Experimental Psychology, 2002, 28, 97-110.	1.7	46
143	Centrally administered corticotropin-releasing hormone and peripheral injections of strychnine hydrochloride potentiate the acoustic startle response in preweanling rats Behavioral Neuroscience, 2001, 115, 1273-1282.	1.2	21
144	Centrally administered corticotropin-releasing hormone and peripheral injections of strychnine hydrochloride potentiate the acoustic startle response in preweanling rats Behavioral Neuroscience, 2001, 115, 1273-1282.	1.2	10

#	Article	IF	CITATIONS
145	The ontogeny of conditioned odor potentiation of startle Behavioral Neuroscience, 2000, 114, 1167-1173.	1.2	41
146	Shock sensitization of startle in the developing rat. , 2000, 36, 282-291.		10
147	Conditioned changes in ultrasonic vocalizations to an aversive olfactory stimulus are lateralized in 6-day-old rats. Developmental Psychobiology, 2000, 37, 121-128.	1.6	4
148	Effects of Environmental Enrichment on Rate of Contextual Processing and Discriminative Ability in Adult Rats. Neurobiology of Learning and Memory, 2000, 73, 1-10.	1.9	52
149	Effects of Multisensory Environmental Stimulation on Contextual Conditioning in the Developing Rat. Neurobiology of Learning and Memory, 2000, 74, 89-104.	1.9	17
150	Shock sensitization of startle: learned or unlearned fear?. Behavioural Brain Research, 2000, 110, 109-117.	2.2	41
151	Diazepam attenuates conditioned odor potentiation of startle in rats. Cognitive, Affective and Behavioral Neuroscience, 2000, 28, 515-519.	1.3	7
152	The ontogeny of conditioned odor potentiation of startle. Behavioral Neuroscience, 2000, 114, 1167-73.	1.2	13
153	Reinstatement of fear to an extinguished conditioned context. Learning and Behavior, 1999, 27, 399-415.	3.4	13
154	Dopamine Antagonists in the Orbital Prefrontal Cortex Reduce Prepulse Inhibition of the Acoustic Startle Reflex in the Rat. Pharmacology Biochemistry and Behavior, 1999, 63, 55-61.	2.9	57
155	The contextual change paradox is still unresolved: Comment on Bouton, Nelson, and Rosas (1999) Psychological Bulletin, 1999, 125, 187-189.	6.1	15
156	Conditioned odor potentiation of startle in rats Behavioral Neuroscience, 1999, 113, 787-794.	1.2	42
157	Conditioned odor potentiation of startle in rats Behavioral Neuroscience, 1999, 113, 787-794.	1.2	19
158	Effects of home-nest odors on the startle response in preweanling rats. Physiology and Behavior, 1998, 64, 621-624.	2.1	4
159	Shock sensitization of startle in rats: The role of contextual conditioning Behavioral Neuroscience, 1998, 112, 1136-1141.	1.2	42
160	Shock sensitization of startle in rats: The role of contextual conditioning Behavioral Neuroscience, 1998, 112, 1136-1141.	1.2	13
161	Emergence of conditioned cardiac responses to an olfactory CS paired with an acoustic startle UCS during development: Form and autonomic origins. Developmental Psychobiology, 1997, 30, 151-163.	1.6	27
162	Developmental and pharmacological analysis of the cardiac response to an acoustic startle stimulus. Psychophysiology, 1996, 33, 31-41.	2.4	21

#	Article	IF	CITATIONS
163	Delayed development of conditioned heart rate responses to auditory stimuli in the rat. Developmental Psychobiology, 1995, 28, 221-238.	1.6	24
164	The orienting response to brief auditory stimuli in preweanling and adult rats. Developmental Psychobiology, 1994, 27, 93-100.	1.6	7
165	Delayed development of fear-potentiated startle in rats Behavioral Neuroscience, 1994, 108, 69-80.	1.2	71
166	Delayed development of fear-potentiated startle in rats Behavioral Neuroscience, 1994, 108, 69-80.	1.2	25
167	Reactivation of nonassociative memory. Developmental Psychobiology, 1993, 26, 1-23.	1.6	11
168	Developmental Changes in the Duration of Attention to Unfamiliar Stimuli in the Rat. Psychophysiology, 1992, 29, 283-293.	2.4	11
169	Latent habituation of the orienting response in the preweanling rat. Learning and Behavior, 1992, 20, 416-426.	3.4	8
170	Response-independent habituation of the orienting response in the preweanling rat. Learning and Behavior, 1992, 20, 17-24.	3.4	5
171	Developmental constraints on the expression of behavioral and heart-rate orienting responses: II. The role of ambient temperature. Developmental Psychobiology, 1992, 25, 51-65.	1.6	9
172	Ontogeny of long-term, nonassociative memory in the rat. Learning and Behavior, 1991, 19, 1-10.	3.4	21
173	The influence of maternal presence on the orienting response in preweanling rats. , 1991, 14, 313-334.		9
174	Developmental constraints on the expression of behavioral and heart-rate orienting responses: I. The role of cardiosomatic coupling. Developmental Psychobiology, 1991, 24, 1-18.	1.6	16
175	Disruption and Recovery of the Orienting Response Following Shock or Context Change in Preweanling Rats. Psychophysiology, 1990, 27, 45-56.	2.4	21
176	Effect of maternal presence on the cardiac and behavioral responses to shock in rats as a function of age. Developmental Psychobiology, 1989, 22, 567-583.	1.6	16
177	ACTH produces long-lasting recovery following partial extinction of an active avoidance response. Behavioral and Neural Biology, 1989, 51, 102-107.	2.2	5
178	Stimulus attributes of reactivated memory: Alleviation of ontogenetic forgetting in rats is context specific. Developmental Psychobiology, 1988, 21, 135-143.	1.6	39
179	Unfamiliar environments impair information processing as measured by behavioral and cardiac orienting responses to auditory stimuli in preweanling and adult rats. Developmental Psychobiology, 1988, 21, 491-503.	1.6	46
180	Effect of maternal presence on the fear response to an unfamiliar environment as measured by heart rate in rats as a function of age. Developmental Psychobiology, 1988, 21, 613-633.	1.6	27

#	Article	IF	CITATIONS
181	Effects of chronic dietary restriction on sensory-motor function and susceptibility to stressor stimuli in the laboratory rat. Experimental Gerontology, 1988, 23, 417-427.	2.8	7
182	Extinction of avoidance through response prevention: Enhancement by administration of epinephrine or ACTH. Behaviour Research and Therapy, 1988, 26, 23-32.	3.1	8
183	Effects of home nest odors on black—white preference in the developing rat: Implications for developmental learning research. Behavioral and Neural Biology, 1988, 50, 361-366.	2.2	5
184	Effect of chronic undernutrition on susceptibility to cold stress in young adult and aged rats. Mechanisms of Ageing and Development, 1988, 44, 193-202.	4.6	18
185	Differential susceptibility to anterograde and retrograde amnesia treatments in preweanling rats Behavioral Neuroscience, 1987, 101, 653-657.	1.2	3
186	Hypothermia-induced anterograde amnesia: Is memory loss attributable to impaired acquisition?. Behavioral and Neural Biology, 1987, 48, 13-23.	2.2	6
187	ACTH- and noncontingent footshock-induced recovery of an extinguished passive avoidance response. Physiology and Behavior, 1987, 40, 677-680.	2.1	8
188	Counterconditioning of memory in rats. Learning and Behavior, 1987, 15, 321-326.	3.4	7
189	Alleviation of infantile amnesia in rats by internal and external contextual cues. Developmental Psychobiology, 1986, 19, 453-462.	1.6	36
190	State-dependent retention induced by postacquisition exposure to pentobarbital or shock stress in rats. Learning and Behavior, 1986, 14, 73-79.	3.4	4
191	Administration of dexamethasone prior to training blocks ACTH-induced recovery of an extinguished avoidance response Behavioral Neuroscience, 1985, 99, 760-764.	1.2	53
192	Administration of dexamethasone prior to training blocks ACTH-induced recovery of an extinguished avoidance response Behavioral Neuroscience, 1985, 99, 760-764.	1.2	18
193	Memory retrieval deficits based upon altered contextual cues: A paradox Psychological Bulletin, 1984, 96, 152-165.	6.1	168
194	The status of memory following experimentally induced amnesias: Gone, but not forgotten. Physiological Psychology, 1984, 12, 59-72.	0.8	59
195	Role of body temperature in the onset of, and recovery from, hypothermia-induced anterograde amnesia. Physiological Psychology, 1984, 12, 125-132.	0.8	23
196	ACTH-induced recovery of extinguished avoidance responding. Physiological Psychology, 1984, 12, 184-192.	0.8	24
197	Stimulus generalization of conditioned taste aversion in rats. Behavioral and Neural Biology, 1984, 41, 41-53.	2.2	32
198	Alleviation of infantile amnesia in rats by means of a pharmacological contextual state. Developmental Psychobiology, 1983, 16, 511-518.	1.6	19

#	Article	IF	CITATIONS
199	Persistence of flavor neophobia as an indicator of state-dependent retention induced by pentobarbital, stress, and estrus. Behavioral and Neural Biology, 1983, 38, 47-60.	2.2	9
200	Anterograde memory loss induced by hypothermia in rats. Behavioral and Neural Biology, 1983, 37, 76-88.	2.2	22
201	Is anterograde amnesia a special case of retrograde amnesia?. Behavioral Neuroscience, 1983, 97, 512-515.	1.2	3
202	Is anterograde amnesia a special case of retrograde amnesia?. Behavioral Neuroscience, 1983, 97, 512-515.	1.2	1
203	Modification of Reactivated Memory through "Counterconditioning". American Journal of Psychology, 1982, 95, 67.	0.3	19
204	Retrograde amnesia for previously acquired Pavlovian conditioning: UCS exposure as a reactivation treatment. Physiological Psychology, 1982, 10, 384-390.	0.8	32
205	Reducing vulnerability to retrograde amnesia treatment: Can new memory be deactivated?. Physiology and Behavior, 1982, 29, 1117-1123.	2.1	4
206	Effects of delayed testing on passive avoidance of conditioned fear stimuli in young rats. Bulletin of the Psychonomic Society, 1981, 18, 211-214.	0.2	4
207	Ovarian hormones and retention of learned fear in rats. Behavioral and Neural Biology, 1981, 33, 45-58.	2.2	17