List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/80575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organocatalytic Stereoselective [8+2] Cycloaddition of Tropones with Azlactones. CCS Chemistry, 2022, 4, 650-659.	7.8	16

2 Waterâ€Involved Ringâ€Opening of 4â€Phenylâ€1,2,4â€triazolineâ€3,5â€dione for "Photoâ€Clickedâ€Access to Carbamoyl Formazan Photoswitches In Situ. Chemistry - an Asian Journal, 2022, 17, e202101239.

3	Low temperature catalytic hydrodeoxygenation of lignin-derived phenols to cyclohexanols over the Ru/SBA-15 catalyst. RSC Advances, 2022, 12, 9352-9362.	3.6	10
4	Water enables diastereodivergency in bispidine-based chiral amine-catalyzed asymmetric Mannich reaction of cyclic <i>N</i> -sulfonyl ketimines with ketones. Chemical Science, 2022, 13, 4313-4320.	7.4	6
5	Total Synthesis of (+)-Hinckdentine A: Harnessing Noncovalent Interactions for Organocatalytic Bromination. Jacs Au, 2022, 2, 793-800.	7.9	14
6	Remarkable enantioselectivity enhancement of the extractors with nonaxial chirality in liquid–liquid extraction of underivatized amino acids by introducing <i>t</i> â€butyl group. Chirality, 2022, , .	2.6	2
7	Ring Expansion of Silacyclobutanes with Allenoates to Selectively Construct 2- or 3-(<i>E</i>)-Enoate-Substituted Silacyclohexenes. ACS Catalysis, 2022, 12, 5185-5196.	11.2	26
8	Origin of enantioselectivity and product-distribution control in isocyanide-based multicomponent reaction catalysed by chiral N, N'-dioxide-Mg(II) complex. Molecular Catalysis, 2022, 524, 112277.	2.0	2
9	Asymmetric Catalytic <scp>αâ€Selective</scp> Allylation of Ketones with Allyltrifluoroborates Using <scp>Dualâ€Functional</scp> Chiral <scp>In^{III}</scp> / <i>N</i> , <i>N</i> â€2â€Dioxide Complex. Chinese Journal of Chemistry, 2022, 40, 1793-1798.	4.9	11
10	Enantioselective Synthesis of Atropisomeric Biaryl Phosphorus Compounds by Chiralâ€Phosphoniumâ€Saltâ€Enabled Cascade Arene Formation. Angewandte Chemie, 2022, 134, .	2.0	4
11	Enantioselective Synthesis of Atropisomeric Biaryl Phosphorus Compounds by Chiralâ€Phosphoniumâ€Saltâ€Enabled Cascade Arene Formation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
12	Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond <i>via</i> [2+2] cycloaddition and sequential transformations. Chemical Science, 2021, 12, 9991-9997.	7.4	22
13	Catalytic enantioselective synthesis of macrodiolides and their application in chiral recognition. Chemical Science, 2021, 12, 2940-2947.	7.4	12
14	Guanidine–Amide-Catalyzed Aza-Henry Reaction of Isatin-Derived Ketimines: Origin of Selectivity and New Catalyst Design. Molecules, 2021, 26, 1965.	3.8	1
15	Asymmetric [2Â+Â2] cycloaddition of isatin with ketene catalyzed by N, N'-dioxide-Sc(III) complex: Mechanism and selectivity. Molecular Catalysis, 2021, 510, 111657.	2.0	0
16	Regio†and Stereoselective Cascade of β,γâ€Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuroâ€Fused [2,3â€b] Skeletons. Angewandte Chemie - International Edition, 2021, 60, 19860-19870.	13.8	33
17	Regio†and Stereoselective Cascade of β,γâ€Unsaturated Ketones by Dipeptided Phosphonium Salt Catalysis: Stereospecific Construction of Dihydrofuroâ€Fused [2,3â€b] Skeletons. Angewandte Chemie, 2021, 133, 20013-20023.	2.0	12
18	Mechanism and Selectivity of Cyclopropanation of 3-Alkenyl-oxindoles with Sulfoxonium Ylides Catalyzed by a Chiral <i>N</i> , <i>N</i> ′-Dioxide–Mg(II) Complex. Journal of Organic Chemistry, 2021, 86, 11683-11697.	3.2	7

#	Article	IF	CITATIONS
19	Diastereo- and Enantioselective Synthesis of 3-Allyl-3-hydroxyoxindoles via Allylation of Isatins. Organic Letters, 2021, 23, 8419-8423.	4.6	13
20	Construction of sterically congested oxindole derivatives <i>via</i> visible-light-induced radical-coupling. Chemical Science, 2021, 12, 15399-15406.	7.4	26
21	Mechanism study on asymmetric Michael addition reaction between alkynone and α-angelica lactone catalyzed by chiral N, N'-dioxide-Sc(III) complex. Catalysis Today, 2020, 355, 635-644.	4.4	3
22	Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose. Chemical Engineering Journal, 2020, 383, 122914.	12.7	28
23	Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Bioresource Technology, 2020, 298, 122544.	9.6	66
24	Asymmetric Cyanation of Activated Olefins with Ethyl Cyanoformate Catalyzed by Ti(IV)-Catalyst: A Theoretical Study. Catalysts, 2020, 10, 1079.	3.5	2
25	Electrochemical lodoamination of Indoles Using Unactivated Amines. Organic Letters, 2020, 22, 9184-9189.	4.6	15
26	Efficient Depolymerization of Cellulosic Paper Towel Waste Using Organic Carbonate Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 13100-13110.	6.7	18
27	Selectivity control in inverse electron demand Diels–Alder reaction of o-Quinone methides catalyzed by chiral N,N′-Dioxide–Sc(III) complex. Molecular Catalysis, 2020, 498, 111242.	2.0	2
28	Diversified Transformations of Tetrahydroindolizines to Construct Chiral 3-Arylindolizines and Dicarbofunctionalized 1,5-Diketones. Journal of the American Chemical Society, 2020, 142, 15975-15985.	13.7	58
29	Multimodal Imaging Iridium(III) Complex for Hypochlorous Acid in Living Systems. Analytical Chemistry, 2020, 92, 8285-8291.	6.5	32
30	Rhodium-Catalyzed Transarylation of Benzamides: C–C Bond vs C–N Bond Activation. ACS Catalysis, 2020, 10, 3398-3403.	11.2	27
31	Theoretical Study on Asymmetric [2 + 2] Cycloaddition of an Alkynone with a Cyclic Enol Silyl Ether Catalyzed by a Chiral <i>N</i> , <i>N</i> ,i>N	2.3	5
32	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Long‣ived Photoactive Photoisomer Complex. Angewandte Chemie, 2019, 131, 14808-14814.	2.0	9
33	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Long‣ived Photoactive Photoisomer Complex. Angewandte Chemie - International Edition, 2019, 58, 14666-14672.	13.8	45
34	Asymmetric Catalytic Formal 1,4â€Allylation of β,γâ€Unsaturated αâ€Ketoesters: Allylboration/Oxyâ€Cope Rearrangement. Angewandte Chemie, 2019, 131, 11972-11977.	2.0	8
35	Cooperative Catalysis of Chiral Guanidine and Rh2(OAc)4 in Asymmetric O–H Insertion of Carboxylic Acid: A Theoretical Investigation. Journal of Organic Chemistry, 2019, 84, 15020-15031.	3.2	11
36	Asymmetric retro-[1,4]-Brook rearrangement of 3-silyl allyloxysilanes via chirality transfer from silicon to carbon. RSC Advances, 2019, 9, 26209-26213.	3.6	4

#	Article	IF	CITATIONS
37	Bimetallic Catalytic Asymmetric Tandem Reaction of βâ€Alkynyl Ketones to Synthesize 6,6â€&piroketals. Angewandte Chemie - International Edition, 2019, 58, 4017-4021.	13.8	69
38	Asymmetric Catalytic Formal 1,4â€Allylation of β,γâ€Unsaturated αâ€Ketoesters: Allylboration/Oxyâ€Cope Rearrangement. Angewandte Chemie - International Edition, 2019, 58, 11846-11851.	13.8	30
39	Asymmetric Baeyer–Villiger oxidation: classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of <i>meso</i> disubstituted cycloketones. Chemical Science, 2019, 10, 7003-7008.	7.4	16
40	<i>exo/endo</i> Selectivity Control in Diels–Alder Reactions of Geminal Bis(silyl) Dienes: Theoretical and Experimental Studies. Journal of Organic Chemistry, 2019, 84, 3940-3952.	3.2	12
41	Intramolecular Reductive Cyclization of <i>o</i> -Nitroarenes via Biradical Recombination. Organic Letters, 2019, 21, 1438-1443.	4.6	39
42	Organic Acid-Regulated Lewis Acidity for Selective Catalytic Hydroxymethylfurfural Production from Rice Waste: An Experimental–Computational Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 1437-1446.	6.7	28
43	Theoretical Investigation on Direct Vinylogous Aldol Reaction of Isatin Catalyzed by Chiral- N , N' -dioxide Sc(III) Complex. Molecular Catalysis, 2018, 453, 22-30.	2.0	1
44	Mechanism and Origins of Stereoinduction in an Asymmetric Friedel–Crafts Alkylation Reaction of Chalcone Catalyzed by Chiral N,N′-Dioxide–Sc(III) Complex. Journal of Organic Chemistry, 2018, 83, 4628-4640.	3.2	10
45	Contrasting Roles of Maleic Acid in Controlling Kinetics and Selectivity of Sn(IV)- and Cr(III)-Catalyzed Hydroxymethylfurfural Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 14264-14274.	6.7	28
46	Effects of γ-Valerolactone/H ₂ O Solvent on the Degradation of <i>pubescens</i> for Its Fullest Utilization. Journal of Agricultural and Food Chemistry, 2018, 66, 6094-6103.	5.2	22
47	Mechanistic investigations on asymmetric N-H insertion of amines catalyzed by palladium-chiral guanidine complex. Journal of Catalysis, 2018, 364, 426-436.	6.2	11
48	Enantioselective Liquid–Liquid Extraction of Underivatized Amino Acids with Simple Chiral Aminophenylâ€Aldehyde. Bulletin of the Korean Chemical Society, 2018, 39, 960-964.	1.9	1
49	Theoretical study on the mechanism and selectivity of asymmetric cycloaddition reactions of 3-vinylindole catalyzed by chiral N,N'-dioxide-Ni(II) complex. Catalysis Today, 2017, 298, 130-137.	4.4	8
50	Theoretical and experimental studies on the structure–property relationship of chiral N,N′-dioxide–metal catalysts probed by the carbonyl–ene reaction of isatin. Catalysis Science and Technology, 2017, 7, 2183-2193.	4.1	7
51	A Simple Two-Step Method for the Selective Conversion of Hemicellulose in <i>Pubescens</i> to Furfural. ACS Sustainable Chemistry and Engineering, 2017, 5, 8137-8147.	6.7	50
52	Theoretical investigation on donor–acceptor interaction between a carbonyl compound and an <i>N</i> , <i>N</i> 〲-dioxide–Sc(<scp>iii</scp>) complex. RSC Advances, 2017, 7, 56054-56061.	3.6	5
53	Tunable reactivity of geminal bis(silyl) enol derivatives leading to selective exo-IEDDA or Sakurai allylation with a l²,l³-unsaturated ketoester. Chemical Communications, 2016, 52, 10137-10140.	4.1	5
54	Mechanistic Study of the Asymmetric Carbonyl-Ene Reaction between Alkyl Enol Ethers and Isatin Catalyzed by the N,N′-Dioxide–Mg(OTf)2 Complex. Journal of Organic Chemistry, 2016, 81, 6444-6456.	3.2	20

#	Article	IF	CITATIONS
55	Unique Steric Effect of Geminal Bis(silane) To Control the High <i>Exo</i> -selectivity in Intermolecular Diels–Alder Reaction. Journal of the American Chemical Society, 2016, 138, 1877-1883.	13.7	68
56	Theoretical Studies on the Asymmetric Baeyer–Villiger Oxidation Reaction of 4â€Phenylcyclohexanone with <i>m</i> â€Chloroperoxobenzoic Acid Catalyzed by Chiral Scandium(III)– <i>N</i> , <i>N</i> à€²â€Dioxide Complexes. Chemistry - A European Journal, 2015, 21, 7264-7277.	3.3	16
57	Trienamine catalysis for asymmetric Diels–Alder reactions of 2,4-dienones: a theoretical investigation. Organic and Biomolecular Chemistry, 2015, 13, 6313-6324.	2.8	7
58	Highly Enantioselective Extraction of Underivatized Amino Acids by the Urylâ€Pendant Hydroxyphenylâ€Binol Ketone. Chemistry - A European Journal, 2014, 20, 2895-2900.	3.3	14
59	A Theoretical Investigation on the Strecker Reaction Catalyzed by a Ti ^{IV} â€Complex Catalyst Generated from a Cinchona Alkaloid, Achiral Substituted 2,2′â€Biphenol, and Tetraisopropyl Titanate. Chemistry - A European Journal, 2013, 19, 1637-1646.	3.3	8
60	Enantioselective Liquid–Liquid Extractions of Underivatized General Amino Acids with a Chiral Ketone Extractant. Journal of the American Chemical Society, 2013, 135, 2653-2658.	13.7	57
61	Theoretical study on the mechanism of Pd(OAc)2 catalyzed dehydrogenative cross-coupling of two heteroarenes. RSC Advances, 2013, 3, 20772.	3.6	5
62	Theoretical investigation on copper hydrides catalyzed hydrosilylation reaction of 3-methylcyclohex-2-enone: mechanism and ligands' effect. Catalysis Science and Technology, 2012, 2, 564-569.	4.1	8
63	Theoretical Study on Heteroâ€Diels–Alder Reaction of Butadiene with Benzaldehyde Catalyzed by Chiral In ^{III} Complexes. European Journal of Organic Chemistry, 2010, 2010, 3867-3875.	2.4	6
64	Theoretical Investigations on the Mechanism of Heteroâ€Diels–Alder Reactions of Brassard's Diene and 1, 3â€Butadiene Catalyzed by a Tridentate Schiff Base Titanium(IV) Complex. Chemistry - A European Journal, 2010, 16, 4359-4367.	3.3	11
65	Highly Efficient Amine Organocatalysts Based on Bispidine for the Asymmetric Michael Addition of Ketones to Nitroolefins. Advanced Synthesis and Catalysis, 2008, 350, 2001-2006.	4.3	62
66	Asymmetric Direct Aldol Reaction of Functionalized Ketones Catalyzed by Amine Organocatalysts Based on Bispidine. Journal of the American Chemical Society, 2008, 130, 5654-5655.	13.7	162