
W Tecumseh Fitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8057279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cranial volume and palate length of cats, <i>Felis</i> spp., under domestication, hybridization and in wild populations. Royal Society Open Science, 2022, 9, 210477.	1.1	6
2	Vocal flexibility in a eusocial rodent. Learning and Behavior, 2022, 50, 3.	0.5	0
3	Why evolve consciousness? Neural credit and blame allocation as a core function of consciousness. Behavioral and Brain Sciences, 2022, 45, e49.	0.4	0
4	Performance of Deaf Participants in an Abstract Visual Grammar Learning Task at Multiple Formal Levels: Evaluating the Auditory Scaffolding Hypothesis. Cognitive Science, 2022, 46, e13114.	0.8	0
5	Cultural evolution: Conserved patterns of melodic evolution across musical cultures. Current Biology, 2022, 32, R265-R267.	1.8	Ο
6	Understanding Design Features of Music and Language: The Choric/Dialogic Distinction. Frontiers in Psychology, 2022, 13, 786899.	1.1	5
7	Seven-month-old infants detect symmetrical structures in multi-featured abstract visual patterns. PLoS ONE, 2022, 17, e0266938.	1.1	0
8	Music as a coevolved system for social bonding. Behavioral and Brain Sciences, 2021, 44, e59.	0.4	176
9	Direct electrical stimulation evidence for a dorsal motor area with control of the larynx. Brain Stimulation, 2021, 14, 110-112.	0.7	5
10	Universal principles underlying segmental structures in parrot song and human speech. Scientific Reports, 2021, 11, 776.	1.6	6
11	Toward inclusive theories of the evolution of musicality. Behavioral and Brain Sciences, 2021, 44, e121.	0.4	14
12	The Influence of Different Prosodic Cues on Word Segmentation. Frontiers in Psychology, 2021, 12, 622042.	1.1	4
13	Airborne vocal communication in adult neotropical otters (Lontra longicaudis). PLoS ONE, 2021, 16, e0251974.	1.1	1
14	The neural crest/domestication syndrome hypothesis, explained: reply to Johnsson, Henriksen, and Wright. Genetics, 2021, 219, .	1.2	12
15	Babbler Phonology and Combinatorial Systems. Inference, 2021, 6, .	0.0	Ο
16	The many functions of vocal learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200235.	1.8	9
17	Phylogenetic signal in the vocalizations of vocal learning and vocal non-learning birds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200241.	1.8	19
18	Vocal learning in animals and humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200234.	1.8	14

#	Article	IF	CITATIONS
19	Voice modulatory cues to structure across languages and species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200393.	1.8	9
20	Information and the single cell. Current Opinion in Neurobiology, 2021, 71, 150-157.	2.0	3
21	Hierarchical Structure in Sequence Processing: How to Measure It and Determine Its Neural Implementation. Topics in Cognitive Science, 2020, 12, 910-924.	1.1	18
22	Animal cognition and the evolution of human language: why we cannot focus solely on communication. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190046.	1.8	50
23	Song Is More Memorable Than Speech Prosody: Discrete Pitches Aid Auditory Working Memory. Frontiers in Psychology, 2020, 11, 586723.	1.1	2
24	Selection on ultrasonic call rate in neonatal rats affects low frequency, but not ultrasonic, vocalizations in adults. Ethology, 2020, 126, 1007-1018.	0.5	5
25	Rapid evolution of the primate larynx?. PLoS Biology, 2020, 18, e3000764.	2.6	12
26	Rapid Learning and Long-Term Memory for Dangerous Humans in Ravens (Corvus corax). Frontiers in Psychology, 2020, 11, 581794.	1.1	7
27	Recursive music elucidates neural mechanisms supporting the generation and detection of melodic hierarchies. Brain Structure and Function, 2020, 225, 1997-2015.	1.2	10
28	Non-native speaker pause patterns closely correspond to those of native speakers at different speech rates. PLoS ONE, 2020, 15, e0230710.	1.1	7
29	Dynamic hierarchical cognition: Music and language demand further types of abstracta. Behavioral and Brain Sciences, 2020, 43, e143.	0.4	2
30	Rapid evolution of the primate larynx?. , 2020, 18, e3000764.		0
31	Rapid evolution of the primate larynx?. , 2020, 18, e3000764.		Ο
32	Rapid evolution of the primate larynx?. , 2020, 18, e3000764.		0
33	Rapid evolution of the primate larynx?. , 2020, 18, e3000764.		Ο
34	Rapid evolution of the primate larynx?. , 2020, 18, e3000764.		0
35	Sequence and hierarchy in vocal rhythms and phonology. Annals of the New York Academy of Sciences, 2019, 1453, 29-46.	1.8	8
36	Perceptual Tuning Influences Rule Generalization: Testing Humans With Monkey-Tailored Stimuli. I-Perception, 2019, 10, 204166951984613.	0.8	4

#	Article	IF	CITATIONS
37	Talking to Dogs: Companion Animal-Directed Speech in a Stress Test. Animals, 2019, 9, 417.	1.0	9
38	The world in a song. Science, 2019, 366, 944-945.	6.0	8
39	Common marmosets are sensitive to simple dependencies at variable distances in an artificial grammar. Evolution and Human Behavior, 2019, 40, 214-221.	1.4	12
40	Artificial visual stimuli for animal experiments: An experimental evaluation in a prey capture context with common marmosets (Callithrix jacchus) Journal of Comparative Psychology (Washington, D C:) Tj ETQqO	0 0og8T /0	Oveslock 10 Tf
41	What animals can teach us about human language: the phonological continuity hypothesis. Current Opinion in Behavioral Sciences, 2018, 21, 68-75.	2.0	18
42	Japanese macaque phonatory physiology. Journal of Experimental Biology, 2018, 221, .	0.8	3
43	The Biology and Evolution of Speech: A Comparative Analysis. Annual Review of Linguistics, 2018, 4, 255-279.	1.2	54
44	The physiology of oral whistling: a combined radiographic and MRI analysis. Journal of Applied Physiology, 2018, 124, 34-39.	1.2	11
45	Artificial Grammar Learning Capabilities in an Abstract Visual Task Match Requirements for Linguistic Syntax. Frontiers in Psychology, 2018, 9, 1210.	1.1	8
46	A technological framework for running and analyzing animal head turning experiments. Behavior Research Methods, 2018, 50, 1154-1165.	2.3	2
47	Bioaesthetics: The evolution of aesthetic cognition in humans and other animals. Progress in Brain Research, 2018, 237, 3-24.	0.9	14
48	Bio-Linguistics: Monkeys Break Through the Syntax Barrier. Current Biology, 2018, 28, R695-R697.	1.8	7
49	Pupillometry of Groove: Evidence for Noradrenergic Arousal in the Link Between Music and Movement. Frontiers in Neuroscience, 2018, 12, 1039.	1.4	19
50	CATOS (Computer Aided Training/Observing System): Automating animal observation and training. Behavior Research Methods, 2017, 49, 13-23.	2.3	8
51	Preface to the Special Issue on the Biology and Evolution of Language. Psychonomic Bulletin and Review, 2017, 24, 1-2.	1.4	37
52	An open source automatic feeder for animal experiments. HardwareX, 2017, 1, 13-21.	1.1	22
53	Empirical approaches to the study of language evolution. Psychonomic Bulletin and Review, 2017, 24, 3-33.	1.4	135
54	Acoustic allometry revisited: morphological determinants of fundamental frequency in primate vocal production. Scientific Reports, 2017, 7, 10450.	1.6	37

#	Article	IF	CITATIONS
55	Utterance-final position and pitch marking aid word learning in school-age children. Royal Society Open Science, 2017, 4, 161035.	1.1	5
56	Cultural evolution: Lab-cultured musical universals. Nature Human Behaviour, 2017, 1, .	6.2	15
57	Formants provide honest acoustic cues to body size in American alligators. Scientific Reports, 2017, 7, 1816.	1.6	24
58	Self-similarity and recursion as default modes in human cognition. Cortex, 2017, 97, 183-201.	1.1	27
59	Response to Lieberman on "Monkey vocal tracts are speech-ready― Science Advances, 2017, 3, e1701859.	4.7	8
60	Cognitive representation of "musical fractals― Processing hierarchy and recursion in the auditory domain. Cognition, 2017, 161, 31-45.	1.1	25
61	Beauty for the eye of the beholder: Plane pattern perception and production Psychology of Aesthetics, Creativity, and the Arts, 2017, 11, 451-456.	1.0	5
62	Dance, Music, Meter and Groove: A Forgotten Partnership. Frontiers in Human Neuroscience, 2016, 10, 64.	1.0	52
63	What Pinnipeds Have to Say about Human Speech, Music, and the Evolution of Rhythm. Frontiers in Neuroscience, 2016, 10, 274.	1.4	41
64	Why formal semantics and primate communication make strange bedfellows. Theoretical Linguistics, 2016, 42, .	0.1	5
65	<i>The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition</i> . By Gregory Hickok. New York: W. W. Norton & Company. \$26.95. ix + 292 p.; ill.; index. ISBN: 978-0-393-08961-5. 2014 Quarterly Review of Biology, 2016, 91, 368-369.	0.0	0
66	Monkey vocal tracts are speech-ready. Science Advances, 2016, 2, e1600723.	4.7	172
67	Harmonic context influences pitch class equivalence judgments through gestalt and congruency effects. Acta Psychologica, 2016, 166, 54-63.	0.7	3
68	Structural Classification of Wild Boar (<i>Sus scrofa</i>) Vocalizations. Ethology, 2016, 122, 329-342.	0.5	26
69	Sound and meaning in the world's languages. Nature, 2016, 539, 39-40.	13.7	5
70	Behavioural Type Affects Space Use in a Wild Population of Crows (Corvus corone). Ethology, 2016, 122, 881-891.	0.5	4
71	Territorial raven pairs are sensitive to structural changes in simulated acoustic displays of conspecifics. Animal Behaviour, 2016, 116, 153-162.	0.8	10
72	Phonological perception by birds: budgerigars can perceive lexical stress. Animal Cognition, 2016, 19, 643-654.	0.9	19

#	Article	IF	CITATIONS
73	Honest signaling in domestic piglets (<i>Sus scrofa domesticus</i>): vocal allometry and the information content of grunt calls. Journal of Experimental Biology, 2016, 219, 1913-21.	0.8	15
74	Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7255-7260.	3.3	438
75	A novel approach to investigate recursion and iteration in visual hierarchical processing. Behavior Research Methods, 2016, 48, 1421-1442.	2.3	15
76	Reinventing Linguistics – Again. Inference, 2016, 2, .	0.0	0
77	Evolutionary Trade-Off between Vocal Tract and Testes Dimensions in Howler Monkeys. Current Biology, 2015, 25, 2839-2844.	1.8	123
78	Rankâ€dependent grooming patterns and cortisol alleviation in Barbary macaques. American Journal of Primatology, 2015, 77, 688-700.	0.8	10
79	Evolving pragmatics. Current Biology, 2015, 25, R1110-R1112.	1.8	3
80	Finding the beat: a neural perspective across humans and non-human primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140093.	1.8	277
81	Non-adjacent visual dependency learning in chimpanzees. Animal Cognition, 2015, 18, 733-745.	0.9	60
82	Representing visual recursion does not require verbal or motor resources. Cognitive Psychology, 2015, 77, 20-41.	0.9	13
83	Four principles of bio-musicology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140091.	1.8	77
84	Flexible compensation of uniparental care: female poison frogs take over when males disappear. Behavioral Ecology, 2015, 26, 1219-1225.	1.0	54
85	A Chinese alligator in heliox: formant frequencies in a crocodilian. Journal of Experimental Biology, 2015, 218, 2442-2447.	0.8	26
86	Post-copulatory grooming: a conditional mating strategy?. Behavioral Ecology and Sociobiology, 2015, 69, 1749-1759.	0.6	9
87	Do Animal Communication Systems Have Phonemes?. Trends in Cognitive Sciences, 2015, 19, 555-557.	4.0	25
88	More than one way to see it: Individual heuristics in avian visual computation. Cognition, 2015, 143, 13-24.	1.1	31
89	Do we represent intentional action as recursively embedded? The answer must be empirical. A comment on Vicari and Adenzato (2014). Consciousness and Cognition, 2015, 38, 16-21.	0.8	4
90	Exploring Shamanic Journeying: Repetitive Drumming with Shamanic Instructions Induces Specific Subjective Experiences but No Larger Cortisol Decrease than Instrumental Meditation Music. PLoS ONE, 2014, 9, e102103.	1.1	16

#	Article	IF	CITATIONS
91	Chorusing, synchrony, and the evolutionary functions of rhythm. Frontiers in Psychology, 2014, 5, 1118.	1.1	105
92	Pitch enhancement facilitates word learning across visual contexts. Frontiers in Psychology, 2014, 5, 1468.	1.1	15
93	Editorial overview: Communication and language: Animal communication and human language. Current Opinion in Neurobiology, 2014, 28, v-viii.	2.0	8
94	Vocal learning, prosody, and basal ganglia: Don't underestimate their complexity. Behavioral and Brain Sciences, 2014, 37, 570-571.	0.4	7
95	The "Domestication Syndrome―in Mammals: A Unified Explanation Based on Neural Crest Cell Behavior and Genetics. Genetics, 2014, 197, 795-808.	1.2	505
96	Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews, 2014, 11, 329-364.	1.5	147
97	Information considered harmful in animal communication. Current Biology, 2014, 24, R8-R10.	1.8	2
98	Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Sciences, 2014, 1316, 87-104.	1.8	195
99	Overtone-based pitch selection in hermit thrush song: Unexpected convergence with scale construction in human music. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16616-16621.	3.3	31
100	Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. Journal of Experimental Biology, 2014, 217, 955-963.	0.8	50
101	Response of red deer stags (Cervus elaphus) to playback of harsh versus common roars. Die Naturwissenschaften, 2014, 101, 851-854.	0.6	12
102	How children perceive fractals: Hierarchical self-similarity and cognitive development. Cognition, 2014, 133, 10-24.	1.1	20
103	COMPARATIVE METHOD FOR DETERMINING LEXICAL STRESS IN NONSENSE WORDS. , 2014, , .		0
104	SOCIAL ORIGINS OF RHYTHM? SYNCHRONY AND TEMPORAL REGULARITY IN HUMAN VOCALIZATION. , 2014, , .		0
105	THE EFFECT OF PITCH ENHANCEMENT ON SPOKEN LANGUAGE ACQUISITION. , 2014, , .		0
106	Koalas use a novel vocal organ to produce unusually low-pitched mating calls. Current Biology, 2013, 23, R1035-R1036.	1.8	44
107	Complex vibratory patterns in an elephant larynx. Journal of Experimental Biology, 2013, 216, 4054-4064.	0.8	25

108 W. Tecumseh Fitch. Current Biology, 2013, 23, R50-R52.

1.8 0

#	Article	IF	CITATIONS
109	Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans. BMC Evolutionary Biology, 2013, 13, 134.	3.2	46
110	Tuned to the rhythm. Nature, 2013, 494, 434-435.	13.7	6
111	Primate Drum Kit: A System for Studying Acoustic Pattern Production by Non-Human Primates Using Acceleration and Strain Sensors. Sensors, 2013, 13, 9790-9820.	2.1	92
112	Action at a distance: dependency sensitivity in a New World primate. Biology Letters, 2013, 9, 20130852.	1.0	53
113	Visualization of system dynamics using phasegrams. Journal of the Royal Society Interface, 2013, 10, 20130288.	1.5	30
114	Fechner revisited: Towards an inclusive approach to aesthetics. Behavioral and Brain Sciences, 2013, 36, 140-141.	0.4	5
115	Studying aesthetics with the method of production: Effects of context and local symmetry Psychology of Aesthetics, Creativity, and the Arts, 2013, 7, 13-26.	1.0	12
116	Primate laterality and the biology and evolution of human handedness: a review and synthesis. Annals of the New York Academy of Sciences, 2013, 1288, 70-85.	1.8	66
117	Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Frontiers in Systems Neuroscience, 2013, 7, 68.	1.2	123
118	Primate precursors to human language: Beyond discontinuity. , 2013, , 26-48.		79
119	Spatial Analysis of "Crazy Quiltsâ€; a Class of Potentially Random Aesthetic Artefacts. PLoS ONE, 2013, 8, e74055.	1.1	6
120	Social Origins of Rhythm? Synchrony and Temporal Regularity in Human Vocalization. PLoS ONE, 2013, 8, e80402.	1.1	28
121	Do Red Deer Stags (Cervus elaphus) Use Roar Fundamental Frequency (F0) to Assess Rivals?. PLoS ONE, 2013, 8, e83946.	1.1	13
122	Birdsong and Other Animal Models for Human Speech, Song, and Vocal Learning. , 2013, , 499-540.		29
123	Female koalas prefer bellows in which lower formants indicate larger males. Animal Behaviour, 2012, 84, 1565-1571.	0.8	63
124	Evolutionary Developmental Biology and Human Language Evolution: Constraints on Adaptation. Evolutionary Biology, 2012, 39, 613-637.	0.5	47
125	Eye preferences in captive chimpanzees. Animal Cognition, 2012, 15, 971-978.	0.9	18
126	Perception of size-related formant information in male koalas (Phascolarctos cinereus). Animal Cognition, 2012, 15, 999-1006.	0.9	33

#	Article	IF	CITATIONS
127	Artificial grammar learning meets formal language theory: an overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1933-1955.	1.8	149
128	Cineradiography of Monkey Lip-Smacking Reveals Putative Precursors of Speech Dynamics. Current Biology, 2012, 22, 1176-1182.	1.8	179
129	Segmental structure in banded mongoose calls. BMC Biology, 2012, 10, 98.	1.7	7
130	How Low Can You Go? Physical Production Mechanism of Elephant Infrasonic Vocalizations. Science, 2012, 337, 595-599.	6.0	105
131	EMPIRICAL APPROACHES TO RECURSION. , 2012, , .		3
132	An Asian Elephant Imitates Human Speech. Current Biology, 2012, 22, 2144-2148.	1.8	134
133	Do Women Prefer More Complex Music around Ovulation?. PLoS ONE, 2012, 7, e35626.	1.1	15
134	Pattern perception and computational complexity: introduction to the special issue. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1925-1932.	1.8	32
135	Vocal cues indicate level of arousal in infant African elephant roars. Journal of the Acoustical Society of America, 2011, 130, 1700-1710.	0.5	65
136	Cues to body size in the formant spacing of male koala (<i>Phascolarctos cinereus</i>) bellows: honesty in an exaggerated trait. Journal of Experimental Biology, 2011, 214, 3414-3422.	0.8	99
137	Genes, Language, Cognition, and Culture: Towards Productive Inquiry. Human Biology, 2011, 83, 323-329.	0.4	3
138	The Evolution of Syntax: An Exaptationist Perspective. Frontiers in Evolutionary Neuroscience, 2011, 3, 9.	3.7	52
139	Biological versus cultural evolution: Beyond a false dichotomy. Physics of Life Reviews, 2011, 8, 357-358.	1.5	6
140	Speech Perception: A Language-Trained Chimpanzee Weighs In. Current Biology, 2011, 21, R543-R546.	1.8	12
141	Multiple varieties of musical meaning. Physics of Life Reviews, 2011, 8, 108-9; discussion 125-8.	1.5	4
142	Unity and diversity in human language. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 376-388.	1.8	39
143	Perception of Male Caller Identity in Koalas (Phascolarctos cinereus): Acoustic Analysis and Playback Experiments. PLoS ONE, 2011, 6, e20329.	1.1	46
144	A MOLECULAR GENETIC FRAMEWORK FOR TESTING HYPOTHESES ABOUT LANGUAGE EVOLUTION. , 2010, , .		3

W Тесимѕен **F**ітсн

#	Article	IF	CITATIONS
145	Bipedal tool use strengthens chimpanzee hand preferences. Journal of Human Evolution, 2010, 58, 234-241.	1.3	52
146	Vocal power and pressure–flow relationships in excised tiger larynges. Journal of Experimental Biology, 2010, 213, 3866-3873.	0.8	35
147	Computer Models of Vocal Tract Evolution: An Overview and Critique. Adaptive Behavior, 2010, 18, 36-47.	1.1	49
148	Social Cognition and the Evolution of Language: Constructing Cognitive Phylogenies. Neuron, 2010, 65, 795-814.	3.8	263
149	Biology of Music: Another One Bites the Dust. Current Biology, 2009, 19, R403-R404.	1.8	23
150	Birdsong normalized by culture. Nature, 2009, 459, 519-520.	13.7	8
151	Nano-intentionality: a defense of intrinsic intentionality. Biology and Philosophy, 2008, 23, 157-177.	0.7	45
152	Glossogeny and phylogeny: cultural evolution meets genetic evolution. Trends in Genetics, 2008, 24, 373-374.	2.9	19
153	Co-evolution of phylogeny and glossogeny: There is no "logical problem of language evolution― Behavioral and Brain Sciences, 2008, 31, 521-522.	0.4	10
154	Perception and Production of Syncopated Rhythms. Music Perception, 2007, 25, 43-58.	0.5	128
155	An invisible hand. Nature, 2007, 449, 665-667.	13.7	48
156	The biology and evolution of music: A comparative perspective. Cognition, 2006, 100, 173-215.	1.1	536
157	On the Biology and Evolution of Music. Music Perception, 2006, 24, 85-88.	0.5	36
158	Rhesus macaques spontaneously perceive formants in conspecific vocalizations. Journal of the Acoustical Society of America, 2006, 120, 2132-2141.	0.5	92
159	THE EVOLUTION OF SPOKEN LANGUAGE: A COMPARATIVE APPROACH. , 2006, , .		0
160	The Evolution of Music in Comparative Perspective. Annals of the New York Academy of Sciences, 2005, 1060, 29-49.	1.8	81
161	The evolution of the language faculty: Clarifications and implications. Cognition, 2005, 97, 179-210.	1.1	593
162	The Evolution of Language: A Comparative Review. Biology and Philosophy, 2005, 20, 193-203.	0.7	144

#	Article	IF	CITATIONS
163	Protomusic and protolanguage as alternatives to protosign. Behavioral and Brain Sciences, 2005, 28, 132-133.	0.4	10
164	Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 941-947.	1.2	261
165	Using mathematical models of language experimentally. Trends in Cognitive Sciences, 2005, 9, 284-289.	4.0	28
166	Computational Constraints on Syntactic Processing in a Nonhuman Primate. Science, 2004, 303, 377-380.	6.0	563
167	Unpacking "Honesty― Vertebrate Vocal Production and the Evolution of Acoustic Signals. , 2003, , 65-137.		126
168	A Laboratory Evaluation of an Auditory Display Designed to Enhance Intraoperative Monitoring. Anesthesia and Analgesia, 2002, 94, 362-368.	1.1	36
169	The Faculty of Language: What Is It, Who Has It, and How Did It Evolve?. Science, 2002, 298, 1569-1579.	6.0	4,180
170	The evolution of language comes of age. Trends in Cognitive Sciences, 2002, 6, 278-279.	4.0	3
171	Motion events in language and cognition. Cognition, 2002, 83, 49-79.	1.1	334
172	The descended larynx is not uniquely human. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1669-1675.	1.2	349
173	The Phonetic Potential of Nonhuman Vocal Tracts: Comparative Cineradiographic Observations of Vocalizing Animals. Phonetica, 2000, 57, 205-218.	0.3	167
174	Perception of Vocal Tract Resonances by Whooping Cranes Grus americana. Ethology, 2000, 106, 559-574.	0.5	72
175	The Origin and Diversification of Language:The Origin and Diversification of Language American Anthropologist, 1999, 101, 864-865.	0.7	0
176	Morphology and development of the human vocal tract: A study using magnetic resonance imaging. Journal of the Acoustical Society of America, 1999, 106, 1511-1522.	0.5	683
177	Modeling the role of nonhuman vocal membranes in phonation. Journal of the Acoustical Society of America, 1999, 105, 2020-2028.	0.5	83
178	Differences that make a difference: Do locus equations result from physical principles characterizing all mammalian vocal tracts?. Behavioral and Brain Sciences, 1998, 21, 264-265.	0.4	1
179	Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. Journal of the Acoustical Society of America, 1997, 102, 1213-1222.	0.5	609
180	Vocal production in nonhuman primates: Acoustics, physiology, and functional constraints on "honest―advertisement. American Journal of Primatology, 1995, 37, 191-219.	0.8	243