Gerald Misinzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8056050/publications.pdf

Version: 2024-02-01

257429 265191 2,168 86 24 42 citations h-index g-index papers 100 100 100 2335 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. Journal of General Virology, 2010, 91, 1659-1667.	2.9	177
2	Correlation between the presence of neutralizing antibodies against porcine circovirus 2 (PCV2) and protection against replication of the virus and development of PCV2-associated disease. BMC Veterinary Research, 2006, 2, 6.	1.9	141
3	Porcine Circovirus 2 Uses Heparan Sulfate and Chondroitin Sulfate B Glycosaminoglycans as Receptors for Its Attachment to Host Cells. Journal of Virology, 2006, 80, 3487-3494.	3.4	130
4	Inhibition of Endosome-Lysosome System Acidification Enhances Porcine Circovirus 2 Infection of Porcine Epithelial Cells. Journal of Virology, 2008, 82, 1128-1135.	3.4	91
5	Binding and entry characteristics of porcine circovirus 2 in cells of the porcine monocytic line 3D4/31. Journal of General Virology, 2005, 86, 2057-2068.	2.9	82
6	Replication kinetics of different porcine circovirus 2 strains in PK-15 cells, fetal cardiomyocytes and macrophages. Archives of Virology, 2005, 150, 427-441.	2.1	79
7	Antigenic differences among porcine circovirus type 2 strains, as demonstrated by the use of monoclonal antibodies. Journal of General Virology, 2008, 89, 177-187.	2.9	74
8	Enhancement of Porcine Circovirus 2 Replication in Porcine Cell Lines by IFN-Î ³ Before and After Treatment and by IFN-α After Treatment. Journal of Interferon and Cytokine Research, 2005, 25, 684-693.	1.2	68
9	The Risk of Dengue Virus Transmission in Dar es Salaam, Tanzania during an Epidemic Period of 2014. PLoS Neglected Tropical Diseases, 2016, 10, e0004313.	3.0	64
10	Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules, 2020, 25, 3682.	3.8	57
11	Historical environmental change in Africa drives divergence and admixture of <i>Aedes aegypti</i> mosquitoes: a precursor to successful worldwide colonization?. Molecular Ecology, 2016, 25, 4337-4354.	3.9	52
12	Porcine circovirus 2 infection of epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Virus Research, 2009, 139, 1-9.	2.2	47
13	Climate Change Influences Potential Distribution of Infected Aedes aegypti Co-Occurrence with Dengue Epidemics Risk Areas in Tanzania. PLoS ONE, 2016, 11, e0162649.	2.5	46
14	Cell tropism and entry of porcine circovirus 2. Virus Research, 2012, 164, 43-45.	2.2	43
15	Forty-two years of responding to Ebola virus outbreaks in Sub-Saharan Africa: a review. BMJ Global Health, 2020, 5, e001955.	4.7	43
16	Mitigating lockdown challenges in response to COVID-19 in Sub-Saharan Africa. International Journal of Infectious Diseases, 2020, 96, 308-310.	3.3	40
17	Genetic Characterization of African Swine Fever Viruses from a 2008 Outbreak in Tanzania. Transboundary and Emerging Diseases, 2011, 58, 86-92.	3.0	36
18	Co-circulation of multiple genotypes of African swine fever viruses among domestic pigs in Zambia (2013-2015). Transboundary and Emerging Diseases, 2018, 65, 114-122.	3.0	36

#	Article	IF	CITATIONS
19	Molecular characterization of African swine fever virus from domestic pigs in northern Tanzania during an outbreak in 2013. Tropical Animal Health and Production, 2014, 46, 1199-1207.	1.4	30
20	Partial Genetic Characterization of Peste Des Petits Ruminants Virus from Goats in Northern and Eastern Tanzania. Transboundary and Emerging Diseases, 2014, 61, 56-62.	3.0	30
21	African Swine Fever Virus, Tanzania, 2010–2012. Emerging Infectious Diseases, 2012, 18, 2081-2083.	4.3	29
22	Epidemiological investigation into the introduction and factors for spread of Peste des Petits Ruminants, southern Tanzania. Onderstepoort Journal of Veterinary Research, 2012, 79, 457.	1.2	29
23	Increased porcine circovirus type 2 replication in porcine leukocytes in vitro and in vivo by concanavalin A stimulation. Veterinary Microbiology, 2008, 132, 74-86.	1.9	27
24	Dengue Virus Infection and Associated Risk Factors in Africa: A Systematic Review and Meta-Analysis. Viruses, 2021, 13, 536.	3.3	27
25	Genetic diversity and risk factors for the transmission of antimicrobial resistance across human, animals and environmental compartments in East Africa: a review. Antimicrobial Resistance and Infection Control, 2020, 9, 127.	4.1	26
26	Drivers, Risk Factors and Dynamics of African Swine Fever Outbreaks, Southern Highlands, Tanzania. Pathogens, 2020, 9, 155.	2.8	25
27	A study of Rift Valley fever virus in Morogoro and Arusha regions of Tanzania – serology and farmers' perceptions. Infection Ecology and Epidemiology, 2015, 5, 30025.	0.8	24
28	History and current status of peste des petits ruminants virus in Tanzania. Infection Ecology and Epidemiology, 2016, 6, 32701.	0.8	24
29	Mosquito-borne viral diseases in the Democratic Republic of the Congo: a review. Parasites and Vectors, 2020, 13, 103.	2.5	23
30	Seroprevalence and risk factors for peste des petits ruminants and selected differential diagnosis in sheep and goats in Tanzania. Infection Ecology and Epidemiology, 2017, 7, 1368336.	0.8	22
31	Variation in Phenolic Compounds and Antioxidant Activity of Various Organs of African Cabbage (Cleome gynandra L.) Accessions at Different Growth Stages. Antioxidants, 2021, 10, 1952.	5.1	22
32	Multidrug-Resistant, Including Extended-Spectrum Beta Lactamase-Producing and Quinolone-Resistant, Escherichia coli Isolated from Poultry and Domestic Pigs in Dar es Salaam, Tanzania. Antibiotics, 2021, 10, 406.	3.7	21
33	Involvement of proteases in porcine reproductive and respiratory syndrome virus uncoating upon internalization in primary macrophages. Veterinary Research, 2008, 39, 55.	3.0	21
34	Increased yield of porcine circovirus-2 by a combined treatment of PK-15 cells with interferon-gamma and inhibitors of endosomal-lysosomal system acidification. Archives of Virology, 2008, 153, 337-342.	2.1	19
35	Preliminary investigation on presence of peste des petits ruminants in Dakawa, Mvomero district, Morogoro region, Tanzania. Onderstepoort Journal of Veterinary Research, 2014, 81, E1-3.	1.2	19
36	Mosquito-borne viruses circulating in Kinshasa, Democratic Republic of the Congo. International Journal of Infectious Diseases, 2017, 57, 32-37.	3.3	19

#	Article	IF	CITATIONS
37	African Swine Fever Virus Circulation between Tanzania and Neighboring Countries: A Systematic Review and Meta-Analysis. Viruses, 2021, 13, 306.	3.3	19
38	Persistent domestic circulation of African swine fever virus in Tanzania, 2015–2017. BMC Veterinary Research, 2020, 16, 369.	1.9	17
39	Exposure to Salinity and Light Spectra Regulates Glucosinolates, Phenolics, and Antioxidant Capacity of Brassica carinata L. Microgreens. Antioxidants, 2021, 10, 1183.	5.1	17
40	Development of a One Health National Capacity in Africa. Current Topics in Microbiology and Immunology, 2012, 366, 73-91.	1.1	17
41	Detection of peste des petits ruminants and concurrent secondary diseases in sheep and goats in Ngorongoro district, Tanzania. Comparative Clinical Pathology, 2019, 28, 755-759.	0.7	16
42	Peste des Petits Ruminants Virus Infection at the Wildlife–Livestock Interface in the Greater Serengeti Ecosystem, 2015–2019. Viruses, 2021, 13, 838.	3.3	16
43	Occurrence of Multi-Drug-Resistant Escherichia coli in Chickens, Humans, Rodents and Household Soil in Karatu, Northern Tanzania. Antibiotics, 2021, 10, 1137.	3.7	16
44	Seroprevalence and associated risk factors of chikungunya, dengue, and Zika in eight districts in Tanzania. International Journal of Infectious Diseases, 2021, 111, 271-280.	3.3	16
45	Genetic Analysis of African Swine Fever Virus From the 2018 Outbreak in South-Eastern Burundi. Frontiers in Veterinary Science, 2020, 7, 578474.	2.2	15
46	Evidence of chikungunya virus infection among febrile patients seeking healthcare in selected districts of Tanzania. Infection Ecology and Epidemiology, 2018, 8, 1553460.	0.8	13
47	Prevalence of asymptomatic malaria, submicroscopic parasitaemia and anaemia in Korogwe District, north-eastern Tanzania. Malaria Journal, 2021, 20, 424.	2.3	13
48	Diagnosis and genotyping of African swine fever viruses from 2015 outbreaks in Zambia. Onderstepoort Journal of Veterinary Research, 2016, 83, a1095.	1.2	12
49	Seroprevalence and associated risk factors of selected zoonotic viral hemorrhagic fevers in Tanzania. International Journal of Infectious Diseases, 2021, 109, 174-181.	3.3	12
50	Efficacy of an Inactivated PRRSV Vaccine: Induction of Virus-Neutralizing Antibodies and Partial Virological Protection upon Challenge. Advances in Experimental Medicine and Biology, 2006, 581, 449-454.	1.6	12
51	Paradigm shift in the diagnosis of peste des petits ruminants: scoping review. Acta Veterinaria Scandinavica, 2020, 62, 7.	1.6	12
52	Complete genome analysis of African swine fever virus responsible for outbreaks in domestic pigs in 2018 in Burundi and 2019 in Malawi. Tropical Animal Health and Production, 2021, 53, 438.	1.4	11
53	Molecular Differentiation of the African Yellow Fever Vector Aedes bromeliae (Diptera: Culicidae) from Its Sympatric Non-vector Sister Species, Aedes lilii. PLoS Neglected Tropical Diseases, 2015, 9, e0004250.	3.0	10
54	Occurrence of Multidrug-Resistant Staphylococcus aureus among Humans, Rodents, Chickens, and Household Soils in Karatu, Northern Tanzania. International Journal of Environmental Research and Public Health, 2021, 18, 8496.	2.6	10

#	Article	IF	CITATIONS
55	Human leptospirosis in Tanzania: sequencing and phylogenetic analysis confirm that pathogenic Leptospira species circulate among agro-pastoralists living in Katavi-Rukwa ecosystem. BMC Infectious Diseases, 2016, 16, 273.	2.9	9
56	Genetic profile of African swine fever virus responsible for the 2019 outbreak in northern Malawi. BMC Veterinary Research, 2020, 16, 316.	1.9	9
57	Circulation of dengue serotype 1 viruses during the 2019 outbreak in Dar es Salaam, Tanzania. Pathogens and Global Health, 2021, 115, 1-9.	2.3	8
58	Batrachochytrium dendrobatidis detected in Kihansi spray toads at a captive breeding facility (Kihansi,) Tj ETQq(0 0 0 rgBT	/Overlock 10
59	Aedes aegypti abundance, larval indices and risk for dengue virus transmission in Kinondoni district, Tanzania. Tropical Medicine and Health, 2022, 50, 1.	2.8	8
60	Morphological and molecular detection of canine dirofilarial species of veterinary and medical importance in Morogoro municipality, Tanzania. Veterinary Parasitology, 2016, 220, 1-3.	1.8	7
61	Molecular epidemiological investigations of plague in Eastern Province of Zambia. BMC Microbiology, 2018, 18, 2.	3.3	7
62	Disease driven extinction in the wild of the Kihansi spray toad, <i>Nectophrynoides asperginis</i> African Journal of Herpetology, 2020, 69, 151-164.	0.9	7
63	Serological evidence of chikungunya and malaria co-infection among febrile patients seeking health care in Karagwe district, Tanzania. Tanzania Journal of Health Research, 2018, 20, .	0.2	7
64	Viral haemorrhagic fevers and malaria co-infections among febrile patients seeking health care in Tanzania. Infectious Diseases of Poverty, 2022, 11, 33.	3.7	7
65	Rotavirus Burden, Genetic Diversity and Impact of Vaccine in Children under Five in Tanzania. Pathogens, 2019, 8, 210.	2.8	6
66	An assessment of the epidemiology and socioeconomic impact of the 2019 African swine fever outbreak in Ngara district, western Tanzania. Veterinary and Animal Science, 2021, 14, 100198.	1.5	6
67	Field-Adapted Full Genome Sequencing of Peste-Des-Petits-Ruminants Virus Using Nanopore Sequencing. Frontiers in Veterinary Science, 2020, 7, 542724.	2.2	5
68	Socio-Ecological Systems Analysis and Health System Readiness in Responding to Dengue Epidemics in Ilala and Kinondoni Districts, Tanzania. Frontiers in Tropical Diseases, 2021, 2, .	1.4	5
69	Complete Genome Sequencing of Field Isolates of Peste des Petits Ruminants Virus from Tanzania Revealed a High Nucleotide Identity with Lineage III PPR Viruses. Animals, 2021, 11, 2976.	2.3	5
70	Estimating Risk of Introduction of Ebola Virus Disease from the Democratic Republic of Congo to Tanzania: A Qualitative Assessment. Epidemiologia, 2022, 3, 68-80.	2.2	5
71	Molecular Epidemiology of Antibiotic Resistance Genes and Virulence Factors in Multidrug-Resistant Escherichia coli Isolated from Rodents, Humans, Chicken, and Household Soils in Karatu, Northern Tanzania. International Journal of Environmental Research and Public Health, 2022, 19, 5388.	2.6	5
72	Rift Valley fever seropositivity in humans and domestic ruminants and associated risk factors in Sengerema, Ilala, and Rufiji districts, Tanzania. International Journal of Infectious Diseases, 2022, 122, 559-565.	3.3	5

#	Article	IF	CITATIONS
73	Current Epidemiological Assessment of Bancroftian Filariasis in Tanga Region, Northeastern Tanzania. Journal of Tropical Medicine, 2016, 2016, 1-5.	1.7	4
74	Rift Valley fever virus in small ruminants in the Democratic Republic of the Congo. Onderstepoort Journal of Veterinary Research, 2019, 86, e1-e5.	1,2	4
75	Filter paper is a simple and cost-effective transport medium for serological diagnosis of Peste des petits ruminants. Small Ruminant Research, 2019, 170, 154-159.	1.2	4
76	Review of Peste des Petits Ruminants Occurrence and Spread in Tanzania. Animals, 2021, 11, 1698.	2.3	4
77	Development of Nanobodies Targeting Peste des Petits Ruminants Virus: The Prospect in Disease Diagnosis and Therapy. Animals, 2021, 11, 2206.	2.3	4
78	Comparative phylogeography of <i>Aedes</i> mosquitoes and the role of past climatic change for evolution within Africa. Ecology and Evolution, 2018, 8, 3019-3036.	1.9	3
79	Analysis of Mutation Rate of 17 Y-Chromosome Short Tandem Repeats Loci Using Tanzanian Father-Son Paired Samples. Genetics Research International, 2018, 2018, 1-5.	2.0	3
80	A Comparative study of the Sero-prevalence of Peste Des Petits Ruminants Virus among Districts of Different Agro-Ecological Zones in Tanzania. East African Journal of Science Technology and Innovation, 2020, 1 , .	0.1	3
81	Physicochemical Characteristics of Aedes Mosquito Breeding Habitats in Suburban and Urban Areas of Kinshasa, Democratic Republic of the Congo. Frontiers in Tropical Diseases, 2022, 2, .	1.4	3
82	DNA-Detection Based Diagnostics for Taenia solium Cysticercosis in Porcine. Journal of Parasitology Research, 2020, 2020, 1-7.	1.2	2
83	Nucleotide amplification and sequencing of the GC-rich region between matrix and fusion protein genes of peste des petits ruminants virus. Journal of Virological Methods, 2022, 300, 114390.	2.1	2
84	Crossing the Line: Seroprevalence and Risk Factors for Transboundary Animal Diseases Along the Tanzania-Zambia Border. Frontiers in Veterinary Science, 2022, 9, 809128.	2.2	2
85	Modified netting technique for capturing gazelles in Serengeti, Ngorongoro and Loliondo, Tanzania. African Journal of Ecology, 2021, 59, 152-158.	0.9	1
86	Maize production systems, farmers' perception and current status of maize lethal necrosis in selected counties in Kenya. International Journal of Transgender Health, 2022, 15, 692-705.	2.3	1