
Polona Umek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8055219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerosol-Assisted CVD-Grown WO ₃ Nanoneedles Decorated with Copper Oxide Nanoparticles for the Selective and Humidity-Resilient Detection of H ₂ S. ACS Applied Materials & Interfaces, 2015, 7, 6842-6851.	8.0	161
2	Single‣tep Deposition of Au―and Ptâ€Nanoparticleâ€Functionalized Tungsten Oxide Nanoneedles Synthesized Via Aerosolâ€Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays. Advanced Functional Materials, 2013, 23, 1313-1322.	14.9	143
3	Air-stable monodispersed Mo6S3I6nanowires. Nanotechnology, 2004, 15, 635-638.	2.6	112
4	Nanoscale spectroscopy with polarized X-rays by NEXAFS-TXM. Nature Photonics, 2012, 6, 25-29.	31.4	106
5	Addition of Carbon Radicals Generated from Organic Peroxides to Single Wall Carbon Nanotubes. Chemistry of Materials, 2003, 15, 4751-4755.	6.7	104
6	Gold clusters on WO3 nanoneedles grown via AACVD: XPS and TEM studies. Materials Chemistry and Physics, 2012, 134, 809-813.	4.0	83
7	Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies. International Journal of Hydrogen Energy, 2013, 38, 2565-2577.	7.1	82
8	Impact of Structure and Morphology on Gas Adsorption of Titanate-Based Nanotubes and Nanoribbons. Chemistry of Materials, 2005, 17, 5945-5950.	6.7	74
9	Synthesis of 3D Hierarchical Self-Assembled Microstructures Formed from α-MnO ₂ Nanotubes and Their Conducting and Magnetic Properties. Journal of Physical Chemistry C, 2009, 113, 14798-14803.	3.1	67
10	Effects of physicochemical properties of TiO2 nanomaterials for pulmonary inflammation, acute phase response and alveolar proteinosis in intratracheally exposed mice. Toxicology and Applied Pharmacology, 2020, 386, 114830.	2.8	66
11	CVD growth of self-assembled 2D and 1D WS2 nanomaterials for the ultrasensitive detection of NO2. Sensors and Actuators B: Chemical, 2021, 326, 128813.	7.8	58
12	Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water. Applied Surface Science, 2018, 440, 916-925.	6.1	56
13	Synthesis of single crystalline In ₂ O ₃ octahedra for the selective detection of NO ₂ and H ₂ at trace levels. Journal of Materials Chemistry C, 2016, 4, 9418-9427.	5.5	53
14	The Influence of the Reaction Temperature on the Morphology of Sodium Titanate 1D Nanostructures and Their Thermal Stability. Journal of Nanoscience and Nanotechnology, 2007, 7, 3502-3508.	0.9	47
15	Interplay between nematic ordering and thermomechanical response in a side-chain liquid single crystal elastomer containing pendant azomesogen units. Polymer, 2009, 50, 4837-4844.	3.8	38
16	SO2 Gas Sensors based on WO3 Nanostructures with Different Morphologies. Procedia Engineering, 2012, 47, 1033-1036.	1.2	37
17	Protein Corona Prevents TiO2 Phototoxicity. PLoS ONE, 2015, 10, e0129577.	2.5	35
18	Microsensors based on Pt–nanoparticle functionalised tungsten oxide nanoneedles for monitoring hydrogen sulfide. RSC Advances, 2014, 4, 1489-1495.	3.6	30

POLONA UMEK

#	Article	IF	CITATIONS
19	Protonated titanate nanotubes as solid acid catalyst for aldol condensation. Journal of Catalysis, 2017, 346, 161-169.	6.2	30
20	AACVD and gas sensing properties of nickel oxide nanoparticle decorated tungsten oxide nanowires. Journal of Materials Chemistry C, 2018, 6, 5181-5192.	5.5	30
21	Transformation of hydrogen titanate nanoribbons to TiO ₂ nanoribbons and the influence of the transformation strategies on the photocatalytic performance. Beilstein Journal of Nanotechnology, 2015, 6, 831-844.	2.8	29
22	A study of thermal properties of sodium titanate nanotubes synthesized by microwave-assisted hydrothermal method. Materials Research Bulletin, 2015, 71, 98-105.	5.2	29
23	Towards Stable and Conductive Titanium Oxynitride Highâ€6urfaceâ€Area Support for Iridium Nanoparticles as Oxygen Evolution Reaction Electrocatalyst. ChemCatChem, 2019, 11, 5038-5044.	3.7	29
24	Coordination of Intercalated Cu ²⁺ Sites in Copper Doped Sodium Titanate Nanotubes and Nanoribbons. Journal of Physical Chemistry C, 2008, 112, 15311-15319.	3.1	28
25	Nanoparticles Can Wrap Epithelial Cell Membranes and Relocate Them Across the Epithelial Cell Layer. Nano Letters, 2018, 18, 5294-5305.	9.1	27
26	WO3 nanowires loaded with cobalt oxide nanoparticles, deposited by a two-step AACVD for gas sensing applications. Sensors and Actuators B: Chemical, 2019, 298, 126868.	7.8	26
27	Graphene Loading with Polypyrrole Nanoparticles for Trace-Level Detection of Ammonia at Room Temperature. ACS Applied Materials & Interfaces, 2021, 13, 40909-40921.	8.0	24
28	Mn ²⁺ Substitutional Doping of TiO ₂ Nanoribbons: A Three-Step Approach. Journal of Physical Chemistry C, 2014, 118, 21250-21257.	3.1	23
29	Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations. Beilstein Journal of Nanotechnology, 2012, 3, 789-797.	2.8	22
30	The control of the diameter and length of α-MnO2 nanorods by regulation of reaction parameters and their thermogravimetric properties. Materials Research Bulletin, 2011, 46, 278-284.	5.2	20
31	Controlling Disorder and Superconductivity in Titanium Oxynitride Nanoribbons with Anion Exchange. ACS Nano, 2015, 9, 10133-10141.	14.6	20
32	Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes. Sensors, 2019, 19, 113.	3.8	20
33	Structural and mechanical properties of polystyrene nanocomposites with 1D titanate nanostructures prepared by an extrusion process. Polymer Composites, 2009, 30, 1318-1325.	4.6	19
34	Bacteria Exposed to Silver Nanoparticles Synthesized by Laser Ablation in Water: Modelling E. coli Growth and Inactivation. Materials, 2020, 13, 653.	2.9	19
35	Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water. Nanomaterials, 2022, 12, 1764.	4.1	19
36	Synthesis, structure, and magnetic properties of iron-oxide nanowires. Journal of Materials Research, 2006, 21, 2955-2962.	2.6	18

POLONA UMEK

#	Article	IF	CITATIONS
37	Hydrothermal Synthesis of Two Dimensional WO3 Nanostructures for NO2 Detection in the ppb-level. Procedia Engineering, 2012, 47, 228-231.	1.2	17
38	Synthesis of Al-doped ZnO nanoparticles by laser ablation of ZnO:Al ₂ O ₃ target in water. Materials Research Express, 2017, 4, 105003.	1.6	17
39	Synthesis and Cathodoluminescence of Undoped and Cr ³⁺ -Doped Sodium Titanate Nanotubes and Nanoribbons. Journal of Physical Chemistry C, 2010, 114, 8192-8198.	3.1	15
40	Effect of inorganic 1D nanoparticles on electrooptic properties of 5CB liquid crystal. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2328-2334.	1.8	14
41	Stabilisation of 2D colloidal assemblies by polymerisation of liquid crystalline matrices for photonic applications. Soft Matter, 2014, 10, 5797-5803.	2.7	14
42	Fluctuation-induced tunneling in TiO2-derived nanotube pellets. Journal of Applied Physics, 2007, 101, 084308.	2.5	13
43	Charge separation and ROS generation on tubular sodium titanates exposed to simulated solar light. Applied Surface Science, 2019, 470, 1053-1063.	6.1	13
44	Local Coordination and Valence States of Cobalt in Sodium Titanate Nanoribbons. Journal of Physical Chemistry C, 2012, 116, 11357-11363.	3.1	12
45	Chemical Bond Modification upon Phase Transformation of TiO ₂ Nanoribbons Revealed by Nanoscale X-ray Linear Dichroism. Journal of Physical Chemistry C, 2017, 121, 17038-17042.	3.1	12
46	Tungsten trioxide nanowires decorated with iridium oxide nanoparticles as gas sensing material. Journal of Alloys and Compounds, 2020, 812, 152156.	5.5	11
47	Individual Titanate Nanoribbons Studied by 3D-Resolved Polarization Dependent X-ray Absorption Spectra Measured with Scanning Transmission X-ray Microscopy. Journal of Physical Chemistry C, 2015, 119, 24192-24200.	3.1	10
48	Surface deposited one-dimensional copper-doped TiO2 nanomaterials for prevention of health care acquired infections. PLoS ONE, 2018, 13, e0201490.	2.5	10
49	Synthesis of silane functionalized sodium titanate nanotubes and their influence on thermal and mechanical properties of epoxy nanocomposite. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2284-2291.	1.8	9
50	The impact of K+ content on the structural transformations and morphological changes during the the thermal treatment of α-MnO2 nanorods. Materials Research Bulletin, 2012, 47, 1523-1528.	5.2	8
51	Sol–gel functionalization of sodium TiO2 nanotubes and nanoribbons with aminosilane molecules. Ceramics International, 2013, 39, 9459-9464.	4.8	8
52	Eu3+â^'doped titanium oxide nanoparticles for optical thermometry in the first biological window. Optical Materials, 2020, 101, 109770.	3.6	8
53	Photocatalytic self-cleaning properties of Mo:TiO2 loaded Zn–Al layered double hydroxide synthesised at optimised pH value for the application on mineral substrates. Ceramics International, 2020, 46, 6756-6766.	4.8	7
54	Functionalization of sodium titanate nanoribbons with silanes and their use in the reinforcement of epoxy nanocomposites. Polymer Composites, 2013, 34, 1382-1388.	4.6	6

POLONA UMEK

#	Article	IF	CITATIONS
55	Structural properties and thermal stability of cobalt- and chromium-doped α-MnO ₂ nanorods. Beilstein Journal of Nanotechnology, 2017, 8, 1032-1042.	2.8	6
56	Role of Water in the Transformation of Protonated Titanate Nanoribbons to Anatase Nanoribbons. Journal of Physical Chemistry C, 2019, 123, 23747-23757.	3.1	6
57	The impact of ageing on the magnetic properties of Cu(OH)2nanoribbons. Nanotechnology, 2005, 16, 1623-1629.	2.6	5
58	Photocatalytic disinfection of surfaces with copper doped TiO2 nanotube coatings illuminated by ceiling mounted fluorescent light. PLoS ONE, 2018, 13, e0197308.	2.5	5
59	Photocatalytic biocidal effect of copper doped TiO2 nanotube coated surfaces under laminar flow, illuminated with UVA light on Legionella pneumophila. PLoS ONE, 2020, 15, e0227574.	2.5	5
60	Flumequine-loaded titanate nanotubes as antibacterial agents for aquaculture farms. RSC Advances, 2022, 12, 5953-5963.	3.6	5
61	Single-step co-deposition of nanostructured tungsten oxide supported gold nanoparticles using a gold–phosphine cluster complex as the gold precursor. Science and Technology of Advanced Materials, 2014, 15, 065004.	6.1	4
62	Controlled Growth and Applications of Carbon Nanotubes. Chimia, 2002, 56, 547-552.	0.6	3
63	Synthesis and Characterization of Mo6S4.5I4.5 Nanowires. Journal of Nanoscience and Nanotechnology, 2007, 7, 982-985.	0.9	3
64	Nanoscale NEXAFS for Probing TiCh-B Nanoribbons Microscopy and Microanalysis, 2018, 24, 474-475.	0.4	3
65	Single cell temperature probed by Eu ⁺³ doped TiO ₂ nanoparticles luminescence. Nano Select, 2021, 2, 1208-1217.	3.7	3
66	Nd3+-Doped TiO2 Nanoparticles as Nanothermometer: High Sensitivity in Temperature Evaluation inside Biological Windows. Sensors, 2021, 21, 5306.	3.8	3
67	Iron-Modified Titanate Nanorods for Oxidation of Aqueous Ammonia Using Combined Treatment with Ozone and Solar Light Irradiation. Catalysts, 2022, 12, 666.	3.5	3
68	Synthesis and Characterization of Sodium Titanate and TiO[sub 2] Nanostructures Loaded with Silver Nanoparticles. , 2011, , .		2
69	Sensors: Single‣tep Deposition of Au―and Ptâ€Nanoparticleâ€Functionalized Tungsten Oxide Nanoneedles Synthesized Via Aerosolâ€Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays (Adv. Funct. Mater. 10/2013). Advanced Functional Materials, 2013, 23, 1226-1226.	14.9	2
70	How to control fluorescent labeling of metal oxide nanoparticles for artefact-free live cell microscopy. Nanotoxicology, 2021, 15, 1102-1123.	3.0	2
71	Non-linear resonance Raman cross-section in single-wall carbon nanotubes at low excitation laser powers. AIP Conference Proceedings, 2001, , .	0.4	0
72	Disease Prediction: Prediction of Chronic Inflammation for Inhaled Particles: the Impact of Material Cycling and Quarantining in the Lung Epithelium (Adv. Mater. 47/2020). Advanced Materials, 2020, 32, .	21.0	0