
Nathalie Vergnolle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8055063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nature Medicine, 2000, 6, 151-158.	15.2	909
2	NSAID-induced gastric damage in rats: Requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology, 2000, 119, 706-714.	0.6	630
3	Role for protease activity in visceral pain in irritable bowel syndrome. Journal of Clinical Investigation, 2007, 117, 636-647.	3.9	490
4	Proteinase-Activated Receptors: Transducers of Proteinase-Mediated Signaling in Inflammation and Immune Response. Endocrine Reviews, 2005, 26, 1-43.	8.9	469
5	Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway. Nature Medicine, 2001, 7, 821-826.	15.2	453
6	Protease-Activated Receptor 2 Sensitizes the Capsaicin Receptor Transient Receptor Potential Vanilloid Receptor 1 to Induce Hyperalgesia. Journal of Neuroscience, 2004, 24, 4300-4312.	1.7	381
7	Protease-activated receptors in inflammation, neuronal signaling and pain. Trends in Pharmacological Sciences, 2001, 22, 146-152.	4.0	361
8	Induction of Intestinal Inflammation in Mouse by Activation of Proteinase-Activated Receptor-2. American Journal of Pathology, 2002, 161, 1903-1915.	1.9	342
9	Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. Journal of Physiology, 2007, 578, 715-733.	1.3	338
10	Protease-activated receptor 2 sensitizes TRPV1 by protein kinase CÉ>- and A-dependent mechanisms in rats and mice. Journal of Physiology, 2006, 575, 555-571.	1.3	243
11	The Intestinal Microenvironment and Functional Gastrointestinal Disorders. Gastroenterology, 2016, 150, 1305-1318.e8.	0.6	243
12	Characterization of the inflammatory response to proteinase-activated receptor-2 (PAR2)-activating peptides in the rat paw. British Journal of Pharmacology, 1999, 127, 1083-1090.	2.7	209
13	Food-Grade Bacteria Expressing Elafin Protect Against Inflammation and Restore Colon Homeostasis. Science Translational Medicine, 2012, 4, 158ra144.	5.8	198
14	Proteinases and proteinase-activated receptor 2: A possible role to promote visceral hyperalgesia in rats. Gastroenterology, 2002, 122, 1035-1047.	0.6	196
15	Proteinase-activated receptor 2 is an anti-inflammatory signal for colonic lamina propria lymphocytes in a mouse model of colitis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13936-13941.	3.3	190
16	LC–MS/MS method for rapid and concomitant quantification of pro-inflammatory and pro-resolving polyunsaturated fatty acid metabolites. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 932, 123-133.	1.2	172
17	Protease inhibition as new therapeutic strategy for GI diseases. Gut, 2016, 65, 1215-1224.	6.1	171
18	A major role for proteolytic activity and proteinase-activated receptor-2 in the pathogenesis of infectious colitis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8363-8368.	3.3	163

#	Article	IF	CITATIONS
19	Proteinase-activated receptor 2 (PAR2)-activating peptides: Identification of a receptor distinct from PAR2 that regulates intestinal transport. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7766-7771.	3.3	154
20	Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology, 2013, 16, 278-283.	2.3	148
21	Characterization of Thrombin-Induced Leukocyte Rolling and Adherence: A Potential Proinflammatory Role for Proteinase-Activated Receptor-4. Journal of Immunology, 2002, 169, 1467-1473.	0.4	147
22	Differential Role of N-Type Calcium Channel Splice Isoforms in Pain. Journal of Neuroscience, 2007, 27, 6363-6373.	1.7	147
23	TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7476-7481.	3.3	147
24	Transient Receptor Potential Vanilloid-4 Has a Major Role in Visceral Hypersensitivity Symptoms. Gastroenterology, 2008, 135, 937-946.e2.	0.6	146
25	Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. Journal of Experimental Medicine, 2006, 203, 425-435.	4.2	145
26	CLINICAL RELEVANCE OF PROTEINASE ACTIVATED RECEPTORS (PARS) IN THE GUT. Gut, 2005, 54, 867-874.	6.1	143
27	Protectin D1 _{n-3 DPA} and resolvin D5 _{n-3 DPA} are effectors of intestinal protection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3963-3968.	3.3	134
28	Proteinase-Activated Receptor-2-Induced Colonic Inflammation in Mice: Possible Involvement of Afferent Neurons, Nitric Oxide, and Paracellular Permeability. Journal of Immunology, 2003, 170, 4296-4300.	0.4	133
29	Proteinase-activated receptor 1 activation induces epithelial apoptosis and increases intestinal permeability. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11104-11109.	3.3	130
30	Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut, 2010, 59, 481-488.	6.1	130
31	Agonists of proteinase-activated receptor 1 induce plasma extravasation by a neurogenic mechanism. British Journal of Pharmacology, 2001, 133, 975-987.	2.7	125
32	Transient Receptor Potential Vanilloid 4 Activated Inflammatory Signals by Intestinal Epithelial Cells and Colitis in Mice. Gastroenterology, 2011, 140, 275-285.e3.	0.6	125
33	Gastrointestinal biofilms in health and disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 314-334.	8.2	124
34	Proteinase-activated receptors in the nervous system. Nature Reviews Neuroscience, 2003, 4, 981-990.	4.9	123
35	Review article: proteinase-activated receptors - novel signals for gastrointestinal pathophysiology. Alimentary Pharmacology and Therapeutics, 2000, 14, 257-266.	1.9	122
36	Proinflammatory role of proteinaseâ€activated receptorâ€2 in humans and mice during cutaneous inflammation in vivo. FASEB Journal, 2003, 17, 1871-1885.	0.2	121

#	Article	IF	CITATIONS
37	PAR2activation alters colonic paracellular permeability in mice via IFN-γ-dependent and -independent pathways. Journal of Physiology, 2004, 558, 913-925.	1.3	121
38	Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome. Gastroenterology, 2015, 149, 433-444.e7.	0.6	116
39	Up-Regulation of Proteinase-Activated Receptor 1 Expression in Astrocytes During HIV Encephalitis. Journal of Immunology, 2003, 170, 2638-2646.	0.4	115
40	Agonists of Proteinase-Activated Receptor-2 Stimulate Upregulation of Intercellular Cell Adhesion Molecule-1 in Primary Human Keratinocytes via Activation of NF-kappa B. Journal of Investigative Dermatology, 2005, 124, 38-45.	0.3	115
41	Protease-activated receptors as drug targets in inflammation and pain. , 2009, 123, 292-309.		113
42	Selective cyclo-oxygenase-2 inhibition with celecoxib elevates blood pressure and promotes leukocyte adherence. British Journal of Pharmacology, 2000, 129, 1423-1430.	2.7	112
43	Pro- and anti-inflammatory actions of thrombin: a distinct role for proteinase-activated receptor-1 (PAR1). British Journal of Pharmacology, 1999, 126, 1262-1268.	2.7	111
44	Proteinase-activated receptors: novel signals for peripheral nerves. Trends in Neurosciences, 2003, 26, 496-500.	4.2	111
45	Protease-activated receptor-4: a novel mechanism of inflammatory pain modulation. British Journal of Pharmacology, 2007, 150, 176-185.	2.7	111
46	Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. British Journal of Pharmacology, 2004, 143, 443-454.	2.7	106
47	Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microbial Cell Factories, 2015, 14, 26.	1.9	103
48	Modifying the Protease, Antiprotease Pattern by Elafin Overexpression Protects Mice From Colitis. Gastroenterology, 2011, 140, 1272-1282.	0.6	102
49	Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2. Nature Communications, 2019, 10, 1198.	5.8	102
50	Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependent manner. Brain, Behavior, and Immunity, 2019, 80, 179-192.	2.0	102
51	Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut, 2017, 66, 1767-1778.	6.1	101
52	Protease-Activated Receptor-2 Activation. American Journal of Pathology, 2006, 168, 1189-1199.	1.9	100
53	Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. British Journal of Pharmacology, 2002, 135, 1101-1106.	2.7	98
54	Functional Characterization and Expression Analysis of the Proteinase-Activated Receptor-2 in Human Cutaneous Mast Cells. Journal of Investigative Dermatology, 2006, 126, 746-755.	0.3	97

#	Article	IF	CITATIONS
55	Kallikrein-mediated cell signalling: targeting proteinase-activated receptors (PARs). Biological Chemistry, 2006, 387, 817-24.	1.2	97
56	Neutrophil-mediated Activation of Epithelial Protease-Activated Receptors-1 and -2 Regulates Barrier Function and Transepithelial Migration. Journal of Immunology, 2008, 181, 5702-5710.	0.4	94
57	Proteinase-Activated Receptor-2 Induction by Neuroinflammation Prevents Neuronal Death during HIV Infection. Journal of Immunology, 2005, 174, 7320-7329.	0.4	92
58	Trypsin IV or Mesotrypsin and p23 Cleave Protease-activated Receptors 1 and 2 to Induce Inflammation and Hyperalgesia. Journal of Biological Chemistry, 2007, 282, 26089-26100.	1.6	92
59	TRPV1 sensitization mediates postinflammatory visceral pain following acute colitis. American Journal of Physiology - Renal Physiology, 2015, 309, G87-G99.	1.6	92
60	Proteaseâ€activated receptorâ€4 (PAR ₄): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterology and Motility, 2009, 21, 1189.	1.6	91
61	Protease-activated receptor-2 activation: a major actor in intestinal inflammation. Gut, 2008, 57, 1222-1229.	6.1	88
62	A role for transient receptor potential vanilloid 4 in tonicityâ€induced neurogenic inflammation. British Journal of Pharmacology, 2010, 159, 1161-1173.	2.7	85
63	Modulation of visceral pain and inflammation by protease-activated receptors. British Journal of Pharmacology, 2004, 141, 1264-1274.	2.7	84
64	Enhanced anti-inflammatory effects of a nitric oxide–releasing derivative of mesalamine in rats. Gastroenterology, 1999, 117, 557-566.	0.6	83
65	Neutrophils and the kallikrein-kinin system in proteinase-activated receptor 4-mediated inflammation in rodents. British Journal of Pharmacology, 2005, 146, 670-678.	2.7	83
66	Mesalazine (5â€aminosalicylic acid) alters faecal bacterial profiles, but not mucosal proteolytic activity in diarrhoeaâ€predominant irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 2011, 34, 374-383.	1.9	82
67	A role for proteinase-activated receptor–1 in inflammatory bowel diseases. Journal of Clinical Investigation, 2004, 114, 1444-1456.	3.9	82
68	Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Canadian Journal of Physiology and Pharmacology, 2003, 81, 920-927.	0.7	81
69	A vasculo-protective circuit centered on lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 operative in murine microcirculation. Blood, 2013, 122, 608-617.	0.6	80
70	Endogenous Regulation of Visceral Pain via Production of Opioids by Colitogenic CD4+ T Cells in Mice. Gastroenterology, 2014, 146, 166-175.	0.6	80
71	Development, plasticity and modulation of visceral afferents. Brain Research Reviews, 2009, 60, 171-186.	9.1	76
72	Protective Role for Protease-Activated Receptor-2 against Influenza Virus Pathogenesis via an IFN-Î ³ -Dependent Pathway. Journal of Immunology, 2009, 182, 7795-7802.	0.4	75

#	Article	IF	CITATIONS
73	Brain–Gut Interactions Increase Peripheral Nociceptive Signaling in Mice With Postinfectious Irritable Bowel Syndrome. Gastroenterology, 2011, 141, 2098-2108.e5.	0.6	75
74	Characterization of Human Colon Organoids From Inflammatory Bowel Disease Patients. Frontiers in Cell and Developmental Biology, 2020, 8, 363.	1.8	74
75	Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update. FEMS Microbiology Letters, 2013, 344, 1-9.	0.7	73
76	Apelin targets gut contraction to control glucose metabolism via the brain. Gut, 2017, 66, 258-269.	6.1	73
77	Proteinase-mediated cell signalling: targeting proteinase-activated receptors (PARs) by kallikreins and more. Biological Chemistry, 2006, 387, 677-685.	1.2	71
78	Neonatal immune challenge alters nociception in the adult rat. Pain, 2005, 119, 133-141.	2.0	70
79	Effects of Chondroitin and Glucosamine Sulfate in a Dietary Bar Formulation on Inflammation, Interleukin-1β, Matrix Metalloprotease-9, and Cartilage Damage in Arthritis. Experimental Biology and Medicine, 2005, 230, 255-262.	1.1	68
80	Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease. Scientific Reports, 2018, 8, 7834.	1.6	67
81	Triggering of proteinaseâ€activated receptor 4 leads to joint pain and inflammation in mice. Arthritis and Rheumatism, 2009, 60, 728-737.	6.7	66
82	Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut, 2016, 65, 757-766.	6.1	64
83	Defects in 15-HETE Production and Control of Epithelial Permeability by Human Enteric Glial Cells From Patients With Crohn's Disease. Gastroenterology, 2016, 150, 168-180.	0.6	64
84	Endogenous Opioid-Mediated Analgesia Is Dependent on Adaptive T Cell Response in Mice. Journal of Immunology, 2011, 186, 5078-5084.	0.4	60
85	Relevance of the cyclophosphamide-induced cystitis model for pharmacological studies targeting inflammation and pain of the bladder. European Journal of Pharmacology, 2013, 707, 32-40.	1.7	59
86	Proteinase-activated Receptor-1 is an Anti-Inflammatory Signal for Colitis Mediated by a Type 2 Immune Response. Inflammatory Bowel Diseases, 2005, 11, 792-798.	0.9	56
87	Novel Role of the Serine Protease Inhibitor Elafin in Gluten-Related Disorders. American Journal of Gastroenterology, 2014, 109, 748-756.	0.2	56
88	REVISITING THE HALLMARKS OF AGING TO IDENTIFY MARKERS OF BIOLOGICAL AGE. journal of prevention of Alzheimer's disease, The, 2020, 7, 1-9.	1.5	56
89	Evidence for the presence of functional protease activated receptor 4 (PAR4) in the rat colon. Gut, 2004, 53, 229-234.	6.1	55
90	Agonists of proteinase-activated receptor-2 modulate human neutrophil cytokine secretion, expression of cell adhesion molecules, and migration within 3-D collagen lattices. Journal of Leukocyte Biology, 2004, 76, 388-398.	1.5	55

#	Article	IF	CITATIONS
91	Proteinase-Activated Receptor-2 Exerts Protective and Pathogenic Cell Type-Specific Effects in Alzheimer's Disease. Journal of Immunology, 2007, 179, 5493-5503.	0.4	53
92	Neurons and Glia in the Enteric Nervous System and Epithelial Barrier Function. Physiology, 2018, 33, 269-280.	1.6	53
93	Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterology and Motility, 2008, 20, 73-80.	1.6	52
94	Endogenous opioid-mediated antinociception in cholestatic mice is peripherally, not centrally, mediated. Journal of Hepatology, 2006, 44, 1141-1149.	1.8	50
95	Protective Effect of Proteinase-Activated Receptor 2 Activation on Motility Impairment and Tissue Damage Induced by Intestinal Ischemia/Reperfusion in Rodents. American Journal of Pathology, 2006, 169, 177-188.	1.9	48
96	Using murine colitis models to analyze probiotics–host interactions. FEMS Microbiology Reviews, 2017, 41, S49-S70.	3.9	47
97	Proteinase-activated Receptor-2 (PAR2) Agonist Causes Periodontitis in Rats. Journal of Dental Research, 2005, 84, 154-159.	2.5	46
98	Annexin 1 is Overexpressed and Specifically Secreted During Experimentally Induced Colitis in Rats. FEBS Journal, 1995, 232, 603-610.	0.2	46
99	TRPV4: New therapeutic target for inflammatory bowel diseases. Biochemical Pharmacology, 2014, 89, 157-161.	2.0	45
100	Proteinase-Activated Receptor-2 (PAR2): A Tumor Suppressor in Skin Carcinogenesis. Journal of Investigative Dermatology, 2007, 127, 2245-2252.	0.3	44
101	5-oxoETE triggers nociception in constipation-predominant irritable bowel syndrome through MAS-related G protein–coupled receptor D. Science Signaling, 2018, 11, .	1.6	44
102	Intrathecal Administration of Proteinase-Activated Receptor-2 Agonists Produces Hyperalgesia by Exciting the Cell Bodies of Primary Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 224-233.	1.3	43
103	Immune conditions associated with CD4+ T effector-induced opioid release and analgesia. Pain, 2012, 153, 485-493.	2.0	43
104	Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain, 2009, 146, 121-129.	2.0	42
105	Focal Adhesion Kinase Splice Variants Maintain Primitive Acute Myeloid Leukemia Cells Through Altered Wnt Signaling. Stem Cells, 2012, 30, 1597-1610.	1.4	41
106	Endogenous analgesia mediated by CD4+ T lymphocytes is dependent on enkephalins in mice. Journal of Neuroinflammation, 2016, 13, 132.	3.1	40
107	Protease-activated Receptor-2 (par ₂) in Human Periodontitis. Journal of Dental Research, 2010, 89, 948-953.	2.5	39
108	Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis and Rheumatism, 2012, 64, 1848-1858.	6.7	39

#	Article	IF	CITATIONS
109	Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nature Communications, 2019, 10, 3224.	5.8	39
110	Role of protease-activated receptor-2 in inflammation, and its possible implications as a putative mediator of periodontitis. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 177-180.	0.8	38
111	Anti-inflammatory effects of nitric oxide-releasing hydrocortisone NCX 1022, in a murine model of contact dermatitis. British Journal of Pharmacology, 2004, 143, 618-625.	2.7	37
112	Derivatized 2-Furoyl-LIGRLO-amide, a Versatile and Selective Probe for Proteinase-Activated Receptor 2: Binding and Visualization. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 453-462.	1.3	37
113	Annexin 1 Is Secreted in Situ During Ulcerative Colitis in Humans. Inflammatory Bowel Diseases, 2004, 10, 584-592.	0.9	35
114	Protease Signaling to G Protein-Coupled Receptors: Implications for Inflammation and Pain. Journal of Receptor and Signal Transduction Research, 2008, 28, 29-37.	1.3	35
115	The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn's disease. Scientific Reports, 2016, 6, 25203.	1.6	35
116	Mechanisms underlying the nociceptive and inflammatory responses induced by trypsin in the mouse paw. European Journal of Pharmacology, 2008, 581, 204-215.	1.7	34
117	Formyl Peptide Receptor 2 Plays a Deleterious Role During Influenza A Virus Infections. Journal of Infectious Diseases, 2016, 214, 237-247.	1.9	34
118	Mechanisms Behind the Anti-inflammatory Actions of Insulin. Critical Reviews in Immunology, 2011, 31, 307-340.	1.0	34
119	Modulation of Protease Activated Receptor 1 Influences Human Metapneumovirus Disease Severity in a Mouse Model. PLoS ONE, 2013, 8, e72529.	1.1	33
120	Characterization and Validation of a Chronic Model of Cyclophosphamide-Induced Interstitial Cystitis/Bladder Pain Syndrome in Rats. Frontiers in Pharmacology, 2020, 11, 1305.	1.6	33
121	Activation of proteinase-activated receptor-1 inhibits neurally evoked chloride secretion in the mouse colon in vitro. American Journal of Physiology - Renal Physiology, 2005, 288, G337-G345.	1.6	32
122	A Spontaneous Mutation of the Rat Themis Gene Leads to Impaired Function of Regulatory T Cells Linked to Inflammatory Bowel Disease. PLoS Genetics, 2012, 8, e1002461.	1.5	32
123	Serine Protease Inhibition Reduces Post-Ischemic Granulocyte Recruitment in Mouse Intestine. American Journal of Pathology, 2012, 180, 141-152.	1.9	31
124	Protease-activated receptor 1 is implicated in irritable bowel syndrome mediators–induced signaling to thoracic human sensory neurons. Pain, 2018, 159, 1257-1267.	2.0	31
125	Inhibition of Neurogenic Inflammation by the Amazonian Herbal Medicine Sangre de Grado. Journal of Investigative Dermatology, 2001, 117, 725-730.	0.3	30
126	The INSPIRE research initiative: a program for GeroScience and healthy aging research going from animal models to humans and the healthcare system. Journal of Frailty & Aging,the, 2021, 10, 1-8.	0.8	30

#	Article	IF	CITATIONS
127	Protective effects of nâ€6 fatty acidsâ€enriched diet on intestinal ischaemia/reperfusion injury involve lipoxin <scp>A</scp> ₄ and its receptor. British Journal of Pharmacology, 2015, 172, 910-923.	2.7	29
128	Proteinase-activated receptor 2 activation modulates guinea-pig mesenteric lymphatic vessel pacemaker potential and contractile activity. Journal of Physiology, 2004, 560, 563-576.	1.3	28
129	Proteinase-activated receptors (PARs): crossroads between innate immunity and coagulation. Current Opinion in Pharmacology, 2006, 6, 428-434.	1.7	28
130	Agonists of proteinaseâ€activated receptorâ€2 affect transendothelial migration and apoptosis of human neutrophils. Experimental Dermatology, 2007, 16, 799-806.	1.4	28
131	Proteinase-activated receptors (PARs) in infection and inflammation in the gut. International Journal of Biochemistry and Cell Biology, 2008, 40, 1219-1227.	1.2	27
132	Chronic stress mediators act synergistically on colonic nociceptive mouse dorsal root ganglia neurons to increase excitability. Neurogastroenterology and Motility, 2014, 26, 334-345.	1.6	27
133	Activated protein C based therapeutic strategies in chronic diseases. Thrombosis and Haemostasis, 2014, 111, 610-617.	1.8	27
134	A novel orally administered trimebutine compound (<scp>GIC</scp> â€1001) is antiâ€nociceptive and features peripheral opioid agonistic activity and Hydrogen Sulphideâ€releasing capacity in mice. European Journal of Pain, 2016, 20, 723-730.	1.4	26
135	Sacral nerve stimulation enhances early intestinal mucosal repair following mucosal injury in a pig model. Journal of Physiology, 2016, 594, 4309-4323.	1.3	26
136	Thrombin modifies growth, proliferation and apoptosis of human colon organoids: a proteaseâ€activated receptor 1―and proteaseâ€activated receptor 4â€dependent mechanism. British Journal of Pharmacology, 2018, 175, 3656-3668.	2.7	26
137	The Enteric Nervous System in Inflammation and Pain: The Role of Proteinase-Activated Receptors. Canadian Journal of Gastroenterology & Hepatology, 2003, 17, 589-592.	1.8	24
138	Sex differences in the GSK3β-mediated survival of adherent leukemic progenitors. Oncogene, 2012, 31, 694-705.	2.6	24
139	PAR ₂ -dependent activation of GSK3β regulates the survival of colon stem/progenitor cells. American Journal of Physiology - Renal Physiology, 2016, 311, C221-C236.	1.6	23
140	Mobilization of CD4+ T lymphocytes in inflamed mucosa reduces pain in colitis mice: toward a vaccinal strategy to alleviate inflammatory visceral pain. Pain, 2018, 159, 331-341.	2.0	22
141	Annexin 1 is Overexpressed and Specifically Secreted During Experimentally Induced Colitis in Rats. FEBS Journal, 1995, 232, 603-610.	0.2	21
142	Agonists of Proteinase-Activated Receptor-2 Enhance IFN-γ-Inducible Effects on Human Monocytes: Role in Influenza A Infection. Journal of Immunology, 2008, 180, 6903-6910.	0.4	21
143	FAK alternative splice mRNA variants expression pattern in colorectal cancer. International Journal of Cancer, 2019, 145, 494-502.	2.3	21
144	Insulin Modulates Protease-Activated Receptor 2 Signaling: Implications for the Innate Immune Response. Journal of Immunology, 2010, 184, 2702-2709.	0.4	20

#	Article	IF	CITATIONS
145	Contribution of bone marrow-derived cells to the pro-inflammatory effects of protease-activated receptor-2 in colitis. Inflammation Research, 2010, 59, 699-709.	1.6	19
146	Anti-inflammatory and anticancer effects of flavonol glycosides from Diplotaxis harra through GSK3β regulation in intestinal cells. Pharmaceutical Biology, 2017, 55, 124-131.	1.3	19
147	Aluminum Ingestion Promotes Colorectal Hypersensitivity in Rodents. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 185-196.	2.3	19
148	Increased Mucosal Thrombin is Associated with Crohn's Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. Journal of Crohn's and Colitis, 2021, 15, 787-799.	0.6	19
149	The Interplay Between Genetic Risk Factors and Proteolytic Dysregulation in the Pathophysiology of Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2020, 14, 1149-1161.	0.6	18
150	Colon-specific immune microenvironment regulates cancer progression versus rejection. Oncolmmunology, 2020, 9, 1790125.	2.1	17
151	Epithelial production of elastase is increased in inflammatory bowel disease and causes mucosal inflammation. Mucosal Immunology, 2021, 14, 667-678.	2.7	17
152	The INSPIRE Bio-resource Research Platform for Healthy Aging and Geroscience: Focus on the Human Translational Research Cohort (The INSPIRE-T Cohort). Journal of Frailty & Aging,the, 2021, 10, 1-11.	0.8	17
153	Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine. PLoS ONE, 2013, 8, e75581.	1.1	16
154	Activation of the endogenous nociceptin system by selective nociceptin receptor agonist <scp>SCH</scp> 221510 produces antitransit and antinociceptive effect: a novel strategy for treatment of diarrheaâ€predominant <scp>IBS</scp> . Neurogastroenterology and Motility, 2014, 26, 1539-1550.	1.6	16
155	PAR ₂ and Temporomandibular Joint Inflammation in the Rat. Journal of Dental Research, 2010, 89, 1123-1128.	2.5	15
156	Effect of tryptase inhibition on joint inflammation: a pharmacological and lentivirus-mediated gene transfer study. Arthritis Research and Therapy, 2017, 19, 124.	1.6	15
157	Inflammatory neutrophils secrete annexin 1 during experimentally induced colitis in rats. Digestive Diseases and Sciences, 1999, 44, 1448-1457.	1.1	14
158	The inflammatory response. Drug Development Research, 2003, 59, 375-381.	1.4	14
159	Analgesic properties of S100A9 Câ€ŧerminal domain: a mechanism dependent on calcium channel inhibition. Fundamental and Clinical Pharmacology, 2009, 23, 427-438.	1.0	14
160	Gut mucosa alterations and loss of segmented filamentous bacteria in type 1 diabetes are associated with inflammation rather than hyperglycaemia. Gut, 2022, 71, 296-308.	6.1	14
161	Adipose-Derived Stem Cells in the Treatment of Perianal Fistulas in Crohn's Disease: Rationale, Clinical Results and Perspectives. International Journal of Molecular Sciences, 2021, 22, 9967.	1.8	14
162	Proteases and Protease-Activated Receptors (PARs): Novel Signals for Pain. Current Topics in Medicinal Chemistry, 2005, 5, 569-576.	1.0	13

#	Article	IF	CITATIONS
163	Citrobacter rodentiuminfection causes iNOS-independent intestinal epithelial dysfunction in mice. Canadian Journal of Physiology and Pharmacology, 2006, 84, 1301-1312.	0.7	13
164	Role of proteinaseâ€activated receptorâ€2 in antiâ€bacterial and immunomodulatory effects of interferonâ€Î³ on human neutrophils and monocytes. Immunology, 2011, 133, 329-339.	2.0	12
165	F16357, a novel proteaseâ€activated receptor 1 antagonist, improves urodynamic parameters in a rat model of interstitial cystitis. British Journal of Pharmacology, 2016, 173, 2224-2236.	2.7	12
166	Proteaseâ€activated receptor 2 contributes to <i>Toxoplasma gondii</i> â€mediated gut inflammation. Parasite Immunology, 2017, 39, e12489.	0.7	12
167	GSK3β, a Master Kinase in the Regulation of Adult Stem Cell Behavior. Cells, 2021, 10, 225.	1.8	12
168	Involvement of interleukin-1, prostaglandins and mast cells in rectal distension-induced colonic water secretion in rats. Journal of Physiology, 1998, 506, 245-252.	1.3	11
169	New neostigmine-based behavioral mouse model of abdominal pain. Pharmacological Reports, 2012, 64, 1146-1154.	1.5	11
170	Culture of rabbit caecum organoids by reconstituting the intestinal stem cell niche in vitro with pharmacological inhibitors or L-WRN conditioned medium. Stem Cell Research, 2020, 48, 101980.	0.3	11
171	Protease-activated receptors and inflammatory hyperalgesia. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 173-176.	0.8	11
172	Visceral afferents: What role in post-inflammatory pain?. Autonomic Neuroscience: Basic and Clinical, 2010, 153, 79-83.	1.4	10
173	Inhibition of sensory afferents activation and visceral pain by a brominated algal diterpene. Neurogastroenterology and Motility, 2012, 24, e336-43.	1.6	10
174	Targeting fatty acid amide hydrolase and transient receptor potential vanilloidâ€1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with Nâ€arachidonoylâ€serotonin (<scp>AA</scp> â€5â€ <scp>HT</scp>). Neurogastroenterology and Motility, 2017, 29, e13148.	1.6	10
175	Bladder telemetry: A new approach to evaluate micturition behavior under physiological and inflammatory conditions. Neurourology and Urodynamics, 2017, 36, 308-315.	0.8	10
176	Towards a large-scale assessment of the relationship between biological and chronological aging: The INSPIRE Mouse Cohort. Journal of Frailty & Aging,the, 2021, 10, 1-11.	0.8	9
177	The C-terminus of murine S100A9 protein inhibits hyperalgesia induced by the agonist peptide of protease-activated receptor 2 (PAR2). British Journal of Pharmacology, 2006, 149, 374-384.	2.7	8
178	Effects of 1â€week sacral nerve stimulation on the rectal intestinal epithelial barrier and neuromuscular transmission in a porcine model. Neurogastroenterology and Motility, 2015, 27, 40-50.	1.6	8
179	Inhibition of both cyclooxygenase (COX)-1 and COX-2 is required for NSAID-induced erosion formation. Gastroenterology, 2000, 118, A194.	0.6	6
180	Proteinase-Activated Receptor-4 is implicated in the pathogenesis of Dextran Sodium Sulfate colitis. Gastroenterology, 2003, 124, A487.	0.6	6

#	Article	IF	CITATIONS
181	Kallikrein-mediated activation of PARs in inflammation and nociception. Inflammation Research, 2007, 56, S499-S502.	1.6	5
182	Sexual dimorphism in PAR2-dependent regulation of primitive colonic cells. Biology of Sex Differences, 2019, 10, 47.	1.8	5
183	Sustainable Positive Response to Sirolimus in Juvenile Polyposis of Infancy. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, e38-e40.	0.9	5
184	Colitis Linked to Endoplasmic Reticulum Stress Induces Trypsin Activity Affecting Epithelial Functions. Journal of Crohn's and Colitis, 2021, 15, 1528-1541.	0.6	5
185	Pain Management in a Model of Interstitial Cystitis/Bladder Pain Syndrome by a Vaccinal Strategy. Frontiers in Pain Research, 2021, 2, 642706.	0.9	5
186	A role for proteinase-activated receptor-1 in inflammatory bowel diseases. Journal of Clinical Investigation, 2006, 116, 2056-2056.	3.9	5
187	PAR-1 Antagonism to Promote Gut Mucosa Healing in Crohn's Disease Patients: A New Avenue for CVT120165. Inflammatory Bowel Diseases, 2021, 27, S33-S37.	0.9	5
188	Proteinase-activated receptors and nociceptive pathways. Drug Development Research, 2003, 59, 382-385.	1.4	4
189	Daphnanes diterpenes from the latex of Hura crepitans L. And activity against human colorectal cancer cells Caco-2. Bioorganic Chemistry, 2020, 103, 104132.	2.0	4
190	Proteinase-activated receptor-1 agonists attenuate visceral pain. Gastroenterology, 2003, 124, A252.	0.6	3
191	Activation of protease-activated receptor-1 (PAR-1) inhibits neurally evoked chloride secretion in the mouse colon. Gastroenterology, 2003, 124, A23.	0.6	3
192	Combined challenge of mice withCitrobacter rodentiumand ionizing radiation promotes bacterial translocation. International Journal of Radiation Biology, 2007, 83, 375-382.	1.0	3
193	T1456 Histamine and Serotonin Sensitizes the Transient Receptor Potential Vanilloid Receptor 4 to Induce Visceral Allodynia and Hyperalgesia. Gastroenterology, 2008, 134, A-559-A-560.	0.6	3
194	Proteases/Antiproteases in Inflammatory Bowel Diseases. , 2011, , 173-215.		3
195	Abdominal pain in irritable bowel syndrome. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 350-350.	8.2	3
196	Increased Proteolytic Activity at Mucosal Surfaces in IBD Patients: A Possible Role for Elafin. Gastroenterology, 2011, 140, S-695.	0.6	2
197	613 Epithelial Mesotrypsin in IBS: Expression and Function. Gastroenterology, 2015, 148, S-120.	0.6	2
198	Su1949 Protease-Activated Receptors Are Expressed and Can Be Activated in Human Sensory Neurons. Gastroenterology, 2016, 150, S596-S597.	0.6	2

#	Article	IF	CITATIONS
199	P100 Intestinal epithelial cells under endoplasmic reticulum stress boosts serine proteolytic activity and modulates barrier function. Journal of Crohn's and Colitis, 2017, 11, S127-S127.	0.6	2
200	Proteinase-activated receptor-1 (PAR-1) is implicated in the pathogenesis of TNBS colitis. Gastroenterology, 2003, 124, A83.	0.6	1
201	Neuroimmune signalling in the gut - mediators linked to disorders?. Neurogastroenterology and Motility, 2006, 18, 497-498.	1.6	1
202	700 Protease-Activated Receptor-4 (PAR4) Activation: Evidences for Its Role and Activation in the Pathogenesis of Colitis and in Inflammatory Bowel Diseases. Gastroenterology, 2009, 136, A-110.	0.6	1
203	Elafin Antiprotease Prevents the Development of Colitis in Mice by Inhibiting Two Neutrophil Serine Proteases: Elastase and Proteinase 3. Gastroenterology, 2011, 140, S-518.	0.6	1
204	Su1947 Mesotrypsin Evokes PAR2 Dependent Excitabilty of Nociceptive Dorsal Root Ganglia (DRG) Neurons. Gastroenterology, 2016, 150, S596.	0.6	1
205	Proteinase-activated recaptor-2 (PAR-2) activation produces delayed rectal hyperalgesia in awake rats. Gastroenterology, 2001, 120, A178.	0.6	0
206	The Canadian Association of Gastroenteroloy - Are You a Member Yet?. Canadian Journal of Gastroenterology & Hepatology, 2003, 17, 563-566.	1.8	0
207	Modulation of neuroimmune axis and treatment of gastrointestinal diseases. Drug Discovery Today: Therapeutic Strategies, 2007, 4, 177-182.	0.5	0
208	W1712 Protease-Activated Receptor-4 (PAR4) Inhibits Pro-Nociceptive Signals and Visceral Hypersensitivity. Gastroenterology, 2009, 136, A-722.	0.6	0
209	Mediators of Chronic Stress and Tissue Proteases Interact to Potentiate the Excitability of Colonic Nociceptive Dorsal Root Ganglia Neurons in a Model of Post-Infectious IBS. Gastroenterology, 2011, 140, S-537.	0.6	0
210	Mesotrypsin/Trypsin IV Expression and Role of Serine Protease Activity in Response to Pathogenic or Commensal Forms of E. coli. Gastroenterology, 2011, 140, S-637.	0.6	0
211	Involvement of Transient Receptor Potential Vanilloid 4 (TRPV4) in Hypersensitivity Associated With Irritable Bowel Syndrome (IBS). Gastroenterology, 2011, 140, S-538.	0.6	0
212	Protease-Activated Receptor 1, 2 but Not 4 Sensitizes Transient Receptor Potential Vanilloid 4 in Human Intestinal Epithelial Cells. Gastroenterology, 2011, 140, S-840.	0.6	0
213	811 ALTERATIONS IN INFLAMMATORY MEDIATORS IN A RAT MODEL OF CYCLOPHOSPHAMIDE-INDUCED ACUTE VISCERAL PAIN. Journal of Urology, 2011, 185, .	0.2	0
214	Mo1854 Quantification of Endogenous Agonist of Transient Receptor Potential (TRP) in Tissues From Irritable Bowel Syndrome (IBS) Patients. Gastroenterology, 2012, 142, S-700.	0.6	0
215	Tu1829 Discovery of an Epithelial Form of Elastase in the Intestine That Participates to Mucosal Inflammation in IBD. Gastroenterology, 2015, 148, S-913-S-914.	0.6	0
216	Su1217 Quantification of Mucosal Polyunsaturated Fatty Acid Metabolites: Association With Crohn's Disease Pathophysiology. Gastroenterology, 2015, 148, S-441.	0.6	0

#	Article	IF	CITATIONS
217	Sa1829 Increase of Cysteine Protease Activity Induced by Autophagy Alters the Intestinal Barrier Homeostasis. Gastroenterology, 2016, 150, S375.	0.6	0
218	Sa1828 Endoplasmic Reticulum Stress Alters the Gut Barrier Function by Modulating the Proteolytic Activity of Intestinal Epithelial Cells. Gastroenterology, 2016, 150, S375.	0.6	0
219	MP72-19 IMMUNOTHERAPEUTIC STRATEGY TO TREAT BLADDER PAINFUL SYNDROME IN A CHRONIC RAT MODEL. Journal of Urology, 2016, 195, .	0.2	0
220	Reply. Gastroenterology, 2016, 150, 777-778.	0.6	0
221	184 Regulation of the Enteric Neuromotor and Sensory Functions in the Mouse With N-Arachidonoyl-Serotonin (AA-5-HT), a Dual Fatty Acid Amide Hydrolase (FAAH) Inhibitor and TRPV1 Antagonist. Gastroenterology, 2016, 150, S48.	0.6	0
222	Proteases., 2017,, 727-766.		0
223	Gender specific behavioral alterations are associated with gut dysbiosis in mice exposed to multifactorial early-life adversity. European Neuropsychopharmacology, 2017, 27, S682-S683.	0.3	0
224	Young GI angle: My biggest (career) mistake. United European Gastroenterology Journal, 2018, 6, 1278-1279.	1.6	0
225	Su1168 - Microbial Proteases Increase Sensitivity to Dietary Antigen Through Par-2 Signaling. Gastroenterology, 2018, 154, S-491-S-492.	0.6	0
226	Characterization of bladder organoid cultures from healthy and cancer tissues. European Urology Supplements, 2019, 18, e660.	0.1	0
227	Neutrophilâ€epithelial contact disrupts epithelial barrier function and is dependent on proteaseâ€activated receptors (PAR)â€1 and â€4. FASEB Journal, 2006, 20, A199.	0.2	0
228	Pharmacological characterization of Protease-Activated Receptor signaling in the human enteric nervous system. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-5-26.	0.0	0
229	Protease-Activated Receptor 1 is implicated in irritable bowel syndrome mediators-induced signalling to human sensory neurons. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR3-3.	0.0	0
230	Thrombin modifies growth, proliferation and apoptosis of human colon organoids: a PAR1- and PAR4-dependent mechanism. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR21-2.	0.0	0
231	Mucosal Thrombin Alters Gut Microbiota Biofilms Structure And Promote Dispersion Of Bacteria With Aggressive Behavior. FASEB Journal, 2020, 34, 1-1.	0.2	0
232	Therapeutic Intervention Targeting Mucosal Thrombin Or Proteaseâ€Activatedâ€Receptor 1 Are Protective Against Colitis. FASEB Journal, 2020, 34, 1-1.	0.2	0
233	A gardian of gut epithelial barrier from inflammation: the elastase inhibitor ELAFIN. FASEB Journal, 2020, 34, 1-1.	0.2	0