List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8054199/publications.pdf Version: 2024-02-01

DOLINE VAN SINDEREN

#	Article	IF	CITATIONS
1	Galacto-oligosaccharides as infant prebiotics: production, application, bioactive activities and future perspectives. Critical Reviews in Food Science and Nutrition, 2023, 63, 753-766.	10.3	30
2	Creating an atlas to visualize the biodiversity of the mammalian gut microbiota. Current Opinion in Biotechnology, 2022, 73, 28-33.	6.6	5
3	Virome studies of food production systems: time for †farm to fork' analyses. Current Opinion in Biotechnology, 2022, 73, 22-27.	6.6	11
4	The human gut microbiota during the initial stages of life: insights from bifidobacteria. Current Opinion in Biotechnology, 2022, 73, 81-87.	6.6	29
5	A Proposed Framework to Identify Dispensable and Essential Functions in Bifidobacteria: Case Study of Bifidobacterium breve UCC2003 as a Prototype of Its Genus. Methods in Molecular Biology, 2022, 2377, 273-302.	0.9	0
6	Novel Siphoviridae phage PMBT4 belonging to the group b Lactobacillus delbrueckii subsp. bulgaricus phages. Virus Research, 2022, 308, 198635.	2.2	5
7	Needle in a Whey-Stack: PhRACS as a Discovery Tool for Unknown Phage-Host Combinations. MBio, 2022, 13, e0333421.	4.1	5
8	Diet and mental health in pregnancy: Nutrients of importance based on large observational cohort data. Nutrition, 2022, 96, 111582.	2.4	15
9	Brussowvirus SW13 Requires a Cell Surface-Associated Polysaccharide To Recognize Its Streptococcus thermophilus Host. Applied and Environmental Microbiology, 2022, 88, AEM0172321.	3.1	8
10	Natural Transformation in Gram-Positive Bacteria and Its Biotechnological Relevance to Lactic Acid Bacteria. Annual Review of Food Science and Technology, 2022, 13, 409-431.	9.9	6
11	Disclosing the Genomic Diversity among Members of the <i>Bifidobacterium</i> Genus of Canine and Feline Origin with Respect to Those from Human. Applied and Environmental Microbiology, 2022, 88, e0203821.	3.1	3
12	Evaluation of Modulatory Activities of Lactobacillus crispatus Strains in the Context of the Vaginal Microbiota. Microbiology Spectrum, 2022, 10, e0273321.	3.0	14
13	Human milk oligosaccharide-sharing by a consortium of infant derived Bifidobacterium species. Scientific Reports, 2022, 12, 4143.	3.3	20
14	Mapping bacterial diversity and metabolic functionality of the human respiratory tract microbiome. Journal of Oral Microbiology, 2022, 14, 2051336.	2.7	6
15	Tap water as a natural vehicle for microorganisms shaping the human gut microbiome. Environmental Microbiology, 2022, , .	3.8	5
16	Dairy streptococcal cell wall and exopolysaccharide genome diversity. Microbial Genomics, 2022, 8, .	2.0	2
17	Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends in Microbiology, 2022, 30, 940-947.	7.7	56
18	Comparative Genomics of Lactiplantibacillus plantarum: Insights Into Probiotic Markers in Strains Isolated From the Human Gastrointestinal Tract and Fermented Foods. Frontiers in Microbiology, 2022, 13, .	3.5	9

#	Article	IF	CITATIONS
19	Exploring the Ecological Effects of Naturally Antibiotic-Insensitive Bifidobacteria in the Recovery of the Resilience of the Gut Microbiota during and after Antibiotic Treatment. Applied and Environmental Microbiology, 2022, 88, .	3.1	4
20	Maximum depth sequencing reveals an ON/OFF replication slippage switch and apparent in vivo selection for bifidobacterial pilus expression. Scientific Reports, 2022, 12, .	3.3	2
21	Priority effects shape the structure of infant-type <i>Bifidobacterium</i> communities on human milk oligosaccharides. ISME Journal, 2022, 16, 2265-2279.	9.8	34
22	Maternal gut microbiota Bifidobacterium promotes placental morphogenesis, nutrient transport and fetal growth in mice. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	19
23	Envisioning emerging frontiers on human gut microbiota and its applications. Microbial Biotechnology, 2021, 14, 12-17.	4.2	2
24	Measuring Conjugated Linoleic Acid (CLA) Production by Bifidobacteria. Methods in Molecular Biology, 2021, 2278, 87-100.	0.9	2
25	Phageome Analysis of Bifidobacteria-Rich Samples. Methods in Molecular Biology, 2021, 2278, 71-85.	0.9	0
26	The genus Bifidobacterium: from genomics to functionality of an important component of the mammalian gut microbiota. Computational and Structural Biotechnology Journal, 2021, 19, 1472-1487.	4.1	49
27	A Resource for Cloning and Expression Vectors Designed for Bifidobacteria: Overview of Available Tools and Biotechnological Applications. Methods in Molecular Biology, 2021, 2278, 157-182.	0.9	1
28	Protocol to Select Bifidobacteria from Fecal and Environmental Samples. Methods in Molecular Biology, 2021, 2278, 61-70.	0.9	1
29	Isolation of Chromosomal and Plasmid DNA from Bifidobacteria. Methods in Molecular Biology, 2021, 2278, 21-29.	0.9	1
30	Determination of Bifidobacterial Carbohydrate Utilization Abilities and Associated Metabolic End Products. Methods in Molecular Biology, 2021, 2278, 117-129.	0.9	2
31	Bifidobacterium Genome Assembly and Methylome Analysis Using Pacbio SMRT Sequencing. Methods in Molecular Biology, 2021, 2278, 225-232.	0.9	0
32	Bifidobacterium Transformation. Methods in Molecular Biology, 2021, 2278, 13-19.	0.9	2
33	Viral Genomics and Evolution: The Fascinating Story of Dairy Phages. , 2021, , 171-187.		1
34	Vaginotypes of the human vaginal microbiome. Environmental Microbiology, 2021, 23, 1780-1792.	3.8	30
35	Broad Purpose Vector for Site-Directed Insertional Mutagenesis in Bifidobacterium breve. Frontiers in Microbiology, 2021, 12, 636822.	3.5	7
36	Analysis of Selection Methods to Develop Novel Phage Therapy Cocktails Against Antimicrobial Resistant Clinical Isolates of Bacteria. Frontiers in Microbiology, 2021, 12, 613529.	3.5	42

#	Article	IF	CITATIONS
37	Amoxicillin-Clavulanic Acid Resistance in the Genus <i>Bifidobacterium</i> . Applied and Environmental Microbiology, 2021, 87, .	3.1	16
38	Comparative Genome Analyses of Lactobacillus crispatus Isolates from Different Ecological Niches Reveal an Adaptation of This Species to the Human Vaginal Environment. Applied and Environmental Microbiology, 2021, 87, .	3.1	8
39	Genetic Dissection of a Prevalent Plasmid-Encoded Conjugation System in Lactococcus lactis. Frontiers in Microbiology, 2021, 12, 680920.	3.5	8
40	Genetic insights into the dark matter of the mammalian gut microbiota through targeted genome reconstruction. Environmental Microbiology, 2021, 23, 3294-3305.	3.8	5
41	Molecular analysis of the replication functions of the bifidobacterial conjugative megaplasmid pMP7017. Microbial Biotechnology, 2021, 14, 1494-1511.	4.2	0
42	Infant-Associated Bifidobacterial β-Galactosidases and Their Ability to Synthesize Galacto-Oligosaccharides. Frontiers in Microbiology, 2021, 12, 662959.	3.5	9
43	A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. International Journal of Biological Macromolecules, 2021, 181, 877-889.	7.5	40
44	METAnnotatorX2: a Comprehensive Tool for Deep and Shallow Metagenomic Data Set Analyses. MSystems, 2021, 6, e0058321.	3.8	35
45	Bifidobacterium breve Exopolysaccharide Blocks Dendritic Cell Maturation and Activation of CD4+ T Cells. Frontiers in Microbiology, 2021, 12, 653587.	3.5	14
46	Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon. Microbial Genomics, 2021, 7, .	2.0	9
47	Lactic Acid Bacteria Diversity and Characterization of Probiotic Candidates in Fermented Meats. Foods, 2021, 10, 1519.	4.3	23
48	Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 2021, 29, 667-685.	7.7	270
49	Biodiversity of Phages Infecting the Dairy Bacterium Streptococcus thermophilus. Microorganisms, 2021, 9, 1822.	3.6	7
50	In Vitro and In Vivo Assessment of the Potential of Escherichia coli Phages to Treat Infections and Survive Gastric Conditions. Microorganisms, 2021, 9, 1869.	3.6	4
51	Cell wall polysaccharides of Gram positive ovococcoid bacteria and their role as bacteriophage receptors. Computational and Structural Biotechnology Journal, 2021, 19, 4018-4031.	4.1	9
52	Site-Directed Mutagenesis of Bifidobacterium Strains. Methods in Molecular Biology, 2021, 2278, 45-60.	0.9	1
53	Plant Glycan Metabolism by Bifidobacteria. Frontiers in Microbiology, 2021, 12, 609418.	3.5	40
54	Exploring the Ecology of Bifidobacteria and Their Genetic Adaptation to the Mammalian Gut. Microorganisms, 2021, 9, 8.	3.6	21

#	Article	IF	CITATIONS
55	Bifidobacterial β-Galactosidase-Mediated Production of Galacto-Oligosaccharides: Structural and Preliminary Functional Assessments. Frontiers in Microbiology, 2021, 12, 750635.	3.5	3
56	Editorial: Role of Bifidobacteria in Human and Animal Health and Biotechnological Applications. Frontiers in Microbiology, 2021, 12, 785664.	3.5	4
57	Simultaneous Production of Multiple Antimicrobial Compounds by Bacillus velezensis ML122-2 Isolated From Assam Tea Leaf [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. Frontiers in Microbiology, 2021, 12, 789362.	3.5	8
58	The Probiotic Identity Card: A Novel "Probiogenomics―Approach to Investigate Probiotic Supplements. Frontiers in Microbiology, 2021, 12, 790881.	3.5	11
59	Diversity of Human-Associated Bifidobacterial Prophage Sequences. Microorganisms, 2021, 9, 2559.	3.6	5
60	Metabolism of biosynthetic oligosaccharides by human-derived Bifidobacterium breve UCC2003 and Bifidobacterium longum NCIMB 8809. International Journal of Food Microbiology, 2020, 316, 108476.	4.7	16
61	The impact of probiotic supplementation on metabolic health in healthy women of reproductive age: a systematic review. Food and Function, 2020, 11, 10279-10289.	4.6	3
62	Riboflavin Biosynthesis and Overproduction by a Derivative of the Human Gut Commensal Bifidobacterium longum subsp. infantis ATCC 15697. Frontiers in Microbiology, 2020, 11, 573335.	3.5	18
63	214: Lifestyle, metabolic health and the gut microbiome in early pregnancy. American Journal of Obstetrics and Gynecology, 2020, 222, S148-S149.	1.3	0
64	Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure. Scientific Reports, 2020, 10, 11598.	3.3	37
65	Untangling Species-Level Composition of Complex Bacterial Communities through a Novel Metagenomic Approach. MSystems, 2020, 5, .	3.8	13
66	Special Issue "Bifidobacteria: Insights from Ecology to Genomics of a Key Microbial Group of the Mammalian Gut Microbiota― Microorganisms, 2020, 8, 1660.	3.6	0
67	Multi-population cohort meta-analysis of human intestinal microbiota in early life reveals the existence of infant community state types (ICSTs). Computational and Structural Biotechnology Journal, 2020, 18, 2480-2493.	4.1	19
68	The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality. Microorganisms, 2020, 8, 1313.	3.6	10
69	Microbiota and Cancer: The Emerging Beneficial Role of Bifidobacteria in Cancer Immunotherapy. Frontiers in Microbiology, 2020, 11, 575072.	3.5	40
70	Multi-omics Approaches To Decipher the Impact of Diet and Host Physiology on the Mammalian Gut Microbiome. Applied and Environmental Microbiology, 2020, 86, .	3.1	24
71	Catching a glimpse of the bacterial gut community of companion animals: a canine and feline perspective. Microbial Biotechnology, 2020, 13, 1708-1732.	4.2	38
72	Evaluation of methods for the reduction of contaminating host reads when performing shotgun metagenomic sequencing of the milk microbiome. Scientific Reports, 2020, 10, 21665.	3.3	33

#	Article	IF	CITATIONS
73	Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance. Microorganisms, 2020, 8, 1685.	3.6	13
74	Can a probiotic supplement in pregnancy result in transfer to the neonatal gut: A systematic review. Acta Obstetricia Et Gynecologica Scandinavica, 2020, 99, 1269-1277.	2.8	11
75	Biochemical analysis of crossâ€feeding behaviour between two common gut commensals when cultivated on plantâ€derived arabinogalactan. Microbial Biotechnology, 2020, 13, 1733-1747.	4.2	20
76	Evolutionary development and coâ€phylogeny of primateâ€associated bifidobacteria. Environmental Microbiology, 2020, 22, 3375-3393.	3.8	17
77	Revisiting the host adhesion determinants of <i>Streptococcus thermophilus</i> siphophages. Microbial Biotechnology, 2020, 13, 1765-1779.	4.2	20
78	Beer spoilage and low pH tolerance is linked to manganese homeostasis in selected <i>Lactobacillus brevis</i> strains. Journal of Applied Microbiology, 2020, 129, 1309-1320.	3.1	10
79	Maternal and infant factors that shape neonatal gut colonization by bacteria. Expert Review of Gastroenterology and Hepatology, 2020, 14, 651-664.	3.0	16
80	The CWPS Rubik's cube: Linking diversity of cell wall polysaccharide structures with the encoded biosynthetic machinery of selected <i>Lactococcus lactis</i> strains. Molecular Microbiology, 2020, 114, 582-596.	2.5	19
81	From lab bench to formulated ingredient: Characterization, production, and commercialization of human milk oligosaccharides. Journal of Functional Foods, 2020, 72, 104052.	3.4	44
82	Investigating bifidobacteria and human milk oligosaccharide composition of lactating mothers. FEMS Microbiology Ecology, 2020, 96, .	2.7	33
83	Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers. Journal of Biological Chemistry, 2020, 295, 5519-5532.	3.4	13
84	Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. Journal of Functional Foods, 2020, 72, 104074.	3.4	159
85	Bifidobacterium breve UCC2003 Induces a Distinct Global Transcriptomic Program in Neonatal Murine Intestinal Epithelial Cells. IScience, 2020, 23, 101336.	4.1	23
86	The Impact and Applications of Phages in the Food Industry and Agriculture. Viruses, 2020, 12, 210.	3.3	4
87	A cell wallâ€associated polysaccharide is required for bacteriophage adsorption to the <i>Streptococcus thermophilus</i> cell surface. Molecular Microbiology, 2020, 114, 31-45.	2.5	22
88	A Plasmid-Encoded Putative Glycosyltransferase Is Involved in Hop Tolerance and Beer Spoilage in Lactobacillus brevis. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
89	The infant gut microbiome as a microbial organ influencing host well-being. Italian Journal of Pediatrics, 2020, 46, 16.	2.6	93
90	Ecological Importance of Cross-Feeding of the Intermediate Metabolite 1,2-Propanediol between Bacterial Gut Symbionts. Applied and Environmental Microbiology, 2020, 86, .	3.1	40

#	Article	IF	CITATIONS
91	Ecology of Lactobacilli Present in Italian Cheeses Produced from Raw Milk. Applied and Environmental Microbiology, 2020, 86, .	3.1	9
92	Bifidobacterium breve UCC2003 Exopolysaccharide Modulates the Early Life Microbiota by Acting as a Potential Dietary Substrate. Nutrients, 2020, 12, 948.	4.1	22
93	Deciphering the Bifidobacterial Populations within the Canine and Feline Gut Microbiota. Applied and Environmental Microbiology, 2020, 86, .	3.1	30
94	The Impact of Primer Design on Amplicon-Based Metagenomic Profiling Accuracy: Detailed Insights into Bifidobacterial Community Structure. Microorganisms, 2020, 8, 131.	3.6	26
95	Identification of a Prophage-encoded Abortive Infection System in Levilactobacillus brevis. Microbiology and Biotechnology Letters, 2020, 48, 322-327.	0.4	1
96	The impact of human-facilitated selection on the gut microbiota of domesticated mammals. FEMS Microbiology Ecology, 2019, 95, .	2.7	29
97	Characterization of GH2 and GH42 β-galactosidases derived from bifidobacterial infant isolates. AMB Express, 2019, 9, 9.	3.0	24
98	Ubiquitous Carbohydrate Binding Modules Decorate 936 Lactococcal Siphophage Virions. Viruses, 2019, 11, 631.	3.3	19
99	A microbiome reality check: limitations of <i>in silico</i> â€based metagenomic approaches to study complex bacterial communities. Environmental Microbiology Reports, 2019, 11, 840-847.	2.4	10
100	A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactis. Journal of Biological Chemistry, 2019, 294, 17612-17625.	3.4	25
101	Uncovering Bifidobacteria via Targeted Sequencing of the Mammalian Gut Microbiota. Microorganisms, 2019, 7, 535.	3.6	10
102	Biodiversity and Classification of Phages Infecting Lactobacillus brevis. Frontiers in Microbiology, 2019, 10, 2396.	3.5	9
103	Bifidobacterial Dialogue With Its Human Host and Consequent Modulation of the Immune System. Frontiers in Immunology, 2019, 10, 2348.	4.8	81
104	Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Scientific Reports, 2019, 9, 15427.	3.3	58
105	Bifidobacterial Transfer from Mother to Child as Examined by an Animal Model. Microorganisms, 2019, 7, 293.	3.6	10
106	A Quest of Great Importance-Developing a Broad Spectrum Escherichia coli Phage Collection. Viruses, 2019, 11, 899.	3.3	9
107	Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environmental Microbiology, 2019, 21, 1331-1343.	3.8	60
108	Compositional assessment of bacterial communities in probiotic supplements by means of metagenomic techniques. International Journal of Food Microbiology, 2019, 294, 1-9.	4.7	26

#	Article	IF	CITATIONS
109	Dissecting the Evolutionary Development of the Species <i>Bifidobacterium animalis</i> through Comparative Genomics Analyses. Applied and Environmental Microbiology, 2019, 85, .	3.1	11
110	Implementation of Transposon Mutagenesis in Bifidobacterium. Methods in Molecular Biology, 2019, 2016, 51-62.	0.9	2
111	<i>Bifidobacterium bifidum</i> and the infant gut microbiota: an intriguing case of microbeâ€host coâ€evolution. Environmental Microbiology, 2019, 21, 3683-3695.	3.8	47
112	Comparative genome analysis of the Lactobacillus brevis species. BMC Genomics, 2019, 20, 416.	2.8	45
113	Isolation of novel gut bifidobacteria using a combination of metagenomic and cultivation approaches. Genome Biology, 2019, 20, 96.	8.8	44
114	Isolation and Characterization of Lactobacillus brevis Phages. Viruses, 2019, 11, 393.	3.3	22
115	The Lactococcus lactis Pan-Plasmidome. Frontiers in Microbiology, 2019, 10, 707.	3.5	22
116	Colonization of the human gut by bovine bacteria present in Parmesan cheese. Nature Communications, 2019, 10, 1286.	12.8	46
117	Impact of a bathing tradition on shared gut microbes among Japanese families. Scientific Reports, 2019, 9, 4380.	3.3	16
118	Ability of bifidobacteria to metabolize chitin-glucan and its impact on the gut microbiota. Scientific Reports, 2019, 9, 5755.	3.3	22
119	Unveiling Genomic Diversity among Members of the Species <i>Bifidobacterium pseudolongum</i> , a Widely Distributed Gut Commensal of the Animal Kingdom. Applied and Environmental Microbiology, 2019, 85, .	3.1	44
120	Bifidobacterium bifidum: A Key Member of the Early Human Gut Microbiota. Microorganisms, 2019, 7, 544.	3.6	70
121	Bifidobacterial Distribution Across Italian Cheeses Produced from Raw Milk. Microorganisms, 2019, 7, 599.	3.6	8
122	Mobilome and Resistome Reconstruction from Genomes Belonging to Members of the Bifidobacterium Genus. Microorganisms, 2019, 7, 638.	3.6	25
123	Transcriptional control of central carbon metabolic flux in Bifidobacteria by two functionally similar, yet distinct Lacl-type regulators. Scientific Reports, 2019, 9, 17851.	3.3	13
124	Health benefits conferred by the human gut microbiota during infancy. Microbial Biotechnology, 2019, 12, 243-248.	4.2	7
125	Complete Genome Sequence of Lactococcus lactis subsp. cremoris 3107, Host for the Model Lactococcal P335 Bacteriophage TP901-1. Microbiology Resource Announcements, 2019, 8, .	0.6	4
126	A Bifidobacterial pilusâ€associated protein promotes colonic epithelial proliferation. Molecular Microbiology, 2019, 111, 287-301.	2.5	62

#	Article	IF	CITATIONS
127	Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1288-1298.	1.7	45
128	Bifidobacteria. , 2019, , 125-137.		0
129	Assessing the functionality and genetic diversity of lactococcal prophages. International Journal of Food Microbiology, 2018, 272, 29-40.	4.7	26
130	Bifidobacterium breve UCC2003 Employs Multiple Transcriptional Regulators To Control Metabolism of Particular Human Milk Oligosaccharides. Applied and Environmental Microbiology, 2018, 84, .	3.1	23
131	Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403. Carbohydrate Research, 2018, 462, 39-44.	2.3	21
132	Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov Systematic and Applied Microbiology, 2018, 41, 173-183.	2.8	58
133	Impact of gut-associated bifidobacteria and their phages on health: two sides of the same coin?. Applied Microbiology and Biotechnology, 2018, 102, 2091-2099.	3.6	14
134	Carbohydrate Metabolism inÂBifidobacteria. , 2018, , 145-164.		15
135	Bifidobacteria: Ecology and Coevolution With the Host. , 2018, , 213-220.		4
136	Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Scientific Reports, 2018, 8, 85.	3.3	99
137	Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve. Nucleic Acids Research, 2018, 46, 1860-1877.	14.5	46
138	Phylotype-Level Profiling of Lactobacilli in Highly Complex Environments by Means of an Internal Transcribed Spacer-Based Metagenomic Approach. Applied and Environmental Microbiology, 2018, 84, .	3.1	16
139	Extraction of the same novel homoglycan mixture from two different strains of Bifidobacterium animalis and three strains of Bifidobacterium breve. Beneficial Microbes, 2018, 9, 663-674.	2.4	3
140	Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9. Carbohydrate Research, 2018, 461, 25-31.	2.3	16
141	A Decade of Streptococcus thermophilus Phage Evolution in an Irish Dairy Plant. Applied and Environmental Microbiology, 2018, 84, .	3.1	35
142	Glycan Utilization and Cross-Feeding Activities by Bifidobacteria. Trends in Microbiology, 2018, 26, 339-350.	7.7	182
143	Plantaricyclin A, a Novel Circular Bacteriocin Produced by Lactobacillus plantarum NI326: Purification, Characterization, and Heterologous Production. Applied and Environmental Microbiology, 2018, 84, .	3.1	64
144	Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cellular and Molecular Life Sciences, 2018, 75, 103-118.	5.4	129

#	Article	IF	CITATIONS
145	Selected aspects of the human gut microbiota. Cellular and Molecular Life Sciences, 2018, 75, 81-82.	5.4	19
146	Generation of Bacteriophage-Insensitive Mutants of Streptococcus thermophilus via an Antisense RNA CRISPR-Cas Silencing Approach. Applied and Environmental Microbiology, 2018, 84, .	3.1	18
147	Tracking the Taxonomy of the Genus Bifidobacterium Based on a Phylogenomic Approach. Applied and Environmental Microbiology, 2018, 84, .	3.1	58
148	Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. Journal of Dairy Science, 2018, 101, 96-105.	3.4	31
149	Identification of DNA Base Modifications by Means of Pacific Biosciences RS Sequencing Technology. Methods in Molecular Biology, 2018, 1681, 127-137.	0.9	10
150	Characterisation of a Hydroxycinnamic Acid Esterase From the Bifidobacterium longum subsp. longum Taxon. Frontiers in Microbiology, 2018, 9, 2690.	3.5	20
151	Identification of Dual Receptor Binding Protein Systems in Lactococcal 936 Group Phages. Viruses, 2018, 10, 668.	3.3	12
152	Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions. Applied Microbiology and Biotechnology, 2018, 102, 10645-10663.	3.6	3
153	Biodiversity of Streptococcus thermophilus Phages in Global Dairy Fermentations. Viruses, 2018, 10, 577.	3.3	29
154	Bifidobacterium bifidum PRL2010 alleviates intestinal ischemia/reperfusion injury. PLoS ONE, 2018, 13, e0202670.	2.5	16
155	Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Scientific Reports, 2018, 8, 13974.	3.3	148
156	Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various Gramâ€positive bacteria. Molecular Microbiology, 2018, 110, 777-795.	2.5	32
157	Comparative Genomics Reveals the Regulatory Complexity of Bifidobacterial Arabinose and Arabino-Oligosaccharide Utilization. Frontiers in Microbiology, 2018, 9, 776.	3.5	45
158	Comparative genomics and genotype-phenotype associations in Bifidobacterium breve. Scientific Reports, 2018, 8, 10633.	3.3	37
159	Carbohydrate Syntrophy enhances the establishment of Bifidobacterium breve UCC2003 in the neonatal gut. Scientific Reports, 2018, 8, 10627.	3.3	19
160	In Vitro Characteristics of Phages to Guide â€~Real Life' Phage Therapy Suitability. Viruses, 2018, 10, 163.	3.3	76
161	Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics, 2018, 19, 33.	2.8	74
162	Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Scientific Reports, 2018, 8, 12772.	3.3	26

#	Article	IF	CITATIONS
163	Tracing mother-infant transmission of bacteriophages by means of a novel analytical tool for shotgun metagenomic datasets: METAnnotatorX. Microbiome, 2018, 6, 145.	11.1	54
164	Exopolysaccharide from Bifidobacterium longum subsp. longum 35624â,,¢ modulates murine allergic airway responses. Beneficial Microbes, 2018, 9, 761-773.	2.4	35
165	Reconstruction of the Bifidobacterial Pan-Secretome Reveals the Network of Extracellular Interactions between Bifidobacteria and the Infant Gut. Applied and Environmental Microbiology, 2018, 84, .	3.1	16
166	Metaâ€analysis of the human gut microbiome from urbanized and preâ€agricultural populations. Environmental Microbiology, 2017, 19, 1379-1390.	3.8	153
167	Ancient bacteria of the Ötzi's microbiome: a genomic tale from the Copper Age. Microbiome, 2017, 5, 5.	11.1	45
168	<i>Bifidobacterium breve</i> reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner. Open Biology, 2017, 7, 160155.	3.6	65
169	Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens. International Journal of Food Microbiology, 2017, 256, 20-29.	4.7	27
170	Bacteriophages Infecting Lactic Acid Bacteria. , 2017, , 249-272.		5
171	Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genomics, 2017, 18, 267.	2.8	117
172	Genome Sequence of Serratia marcescens Phage BF. Genome Announcements, 2017, 5, .	0.8	11
173	Sourdough authentication: quantitative PCR to detect the lactic acid bacterial microbiota in breads. Scientific Reports, 2017, 7, 624.	3.3	24
174	Untangling the cecal microbiota of feral chickens by culturomic and metagenomic analyses. Environmental Microbiology, 2017, 19, 4771-4783.	3.8	49
175	Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME Journal, 2017, 11, 2834-2847.	9.8	96
176	Unveiling the gut microbiota composition and functionality associated with constipation through metagenomic analyses. Scientific Reports, 2017, 7, 9879.	3.3	123
177	Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of <i>Lactococcus lactis</i> . MBio, 2017, 8, .	4.1	42
178	Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures. Applied and Environmental Microbiology, 2017, 83, .	3.1	23
179	The Sortase-Dependent Fimbriome of the Genus Bifidobacterium: Extracellular Structures with Potential To Modulate Microbe-Host Dialogue. Applied and Environmental Microbiology, 2017, 83, .	3.1	31
180	The essential genomic landscape of the commensal Bifidobacterium breve UCC2003. Scientific Reports, 2017, 7, 5648.	3.3	26

#	Article	IF	CITATIONS
181	Omics of bifidobacteria: research and insights into their health-promoting activities. Biochemical Journal, 2017, 474, 4137-4152.	3.7	107
182	The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	1,118
183	Obesity and microbiota: an example of an intricate relationship. Genes and Nutrition, 2017, 12, 18.	2.5	86
184	Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome, 2017, 5, 66.	11.1	240
185	Genetic and functional characterisation of the lactococcal P335 phage-host interactions. BMC Genomics, 2017, 18, 146.	2.8	29
186	Host recognition by lactic acid bacterial phages. FEMS Microbiology Reviews, 2017, 41, S16-S26.	8.6	35
187	Feeding the microbiota: transducer of nutrient signals for the host. Gut, 2017, 66, 1709-1717.	12.1	124
188	Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria. Applied and Environmental Microbiology, 2017, 83, .	3.1	88
189	Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiology Ecology, 2017, 93, .	2.7	191
190	Global transcriptional landscape and promoter mapping of the gut commensal Bifidobacterium breve UCC2003. BMC Genomics, 2017, 18, 991.	2.8	24
191	Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genomics, 2017, 18, 568.	2.8	98
192	Phage Biodiversity in Artisanal Cheese Wheys Reflects the Complexity of the Fermentation Process. Viruses, 2017, 9, 45.	3.3	21
193	Metagenomic Approaches to Assess Bacteriophages in Various Environmental Niches. Viruses, 2017, 9, 127.	3.3	98
194	Biocidal Inactivation of Lactococcus lactis Bacteriophages: Efficacy and Targets of Commonly Used Sanitizers. Frontiers in Microbiology, 2017, 8, 107.	3.5	23
195	Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation. Frontiers in Microbiology, 2017, 8, 964.	3.5	17
196	Detecting Lactococcus lactis Prophages by Mitomycin C-Mediated Induction Coupled to Flow Cytometry Analysis. Frontiers in Microbiology, 2017, 8, 1343.	3.5	25
197	How to Feed the Mammalian Gut Microbiota: Bacterial and Metabolic Modulation by Dietary Fibers. Frontiers in Microbiology, 2017, 8, 1749.	3.5	86
198	Global Survey and Genome Exploration of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Frontiers in Microbiology, 2017, 8, 1754.	3.5	27

#	Article	IF	CITATIONS
199	Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage. Nucleic Acids Research, 2017, 45, 10143-10155.	14.5	7
200	Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis. Nucleic Acids Research, 2017, 45, 10156-10167.	14.5	9
201	Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus. Frontiers in Microbiology, 2016, 7, 120.	3.5	50
202	Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Frontiers in Microbiology, 2016, 7, 925.	3.5	627
203	Genome Analysis and Characterisation of the Exopolysaccharide Produced by Bifidobacterium longum subsp. longum 35624â,,¢. PLoS ONE, 2016, 11, e0162983.	2.5	76
204	The human gut microbiota and its interactive connections to diet. Journal of Human Nutrition and Dietetics, 2016, 29, 539-546.	2.5	62
205	Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 2016, 18, 4727-4738.	3.8	152
206	Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Scientific Reports, 2016, 6, 38560.	3.3	118
207	Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis. Scientific Reports, 2016, 6, 23971.	3.3	97
208	Glycosulfatase-Encoding Gene Cluster in Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2016, 82, 6611-6623.	3.1	40
209	Elucidating the gut microbiome of ulcerative colitis: bifidobacteria as novel microbial biomarkers. FEMS Microbiology Ecology, 2016, 92, fiw191.	2.7	102
210	Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome. Cell Host and Microbe, 2016, 20, 515-526.	11.0	337
211	Genome Sequences of Eight Prophages Isolated from Lactococcus lactis Dairy Strains. Genome Announcements, 2016, 4, .	0.8	3
212	Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study. Scientific Reports, 2016, 6, 25945.	3.3	207
213	Stress Physiology of Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 837-890.	6.6	487
214	The Surface-Associated Exopolysaccharide of Bifidobacterium longum 35624 Plays an Essential Role in Dampening Host Proinflammatory Responses and Repressing Local T _H 17 Responses. Applied and Environmental Microbiology, 2016, 82, 7185-7196.	3.1	126
215	Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages. Scientific Reports, 2016, 6, 21345.	3.3	64
216	Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Scientific Reports, 2016, 6, 36667.	3.3	75

#	Article	IF	CITATIONS
217	Prophages of the genus <scp><i>B</i></scp> <i>ifidobacterium</i> as modulating agents of the infant gut microbiota. Environmental Microbiology, 2016, 18, 2196-2213.	3.8	66
218	Identification and Analysis of a Novel Group of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Applied and Environmental Microbiology, 2016, 82, 5153-5165.	3.1	53
219	Cloning, expression and characterization of a β-d-xylosidase from Lactobacillus rossiae DSM 15814T. Microbial Cell Factories, 2016, 15, 72.	4.0	24
220	The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase. Journal of Biological Chemistry, 2016, 291, 16816-16827.	3.4	11
221	MEGAnnotator: a user-friendly pipeline for microbial genomes assembly and annotation. FEMS Microbiology Letters, 2016, 363, fnw049.	1.8	94
222	<i>Lactococcus lactis</i> phage TP901–1 as a model for <i>Siphoviridae</i> virion assembly. Bacteriophage, 2016, 6, e1123795.	1.9	15
223	Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. ISME Journal, 2016, 10, 1656-1668.	9.8	145
224	The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. MBio, 2016, 7, e01781-15.	4.1	58
225	Modulation of the <i>eps</i> -ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiology Ecology, 2016, 92, fiw056.	2.7	44
226	Glycoside hydrolase family 13 α-glucosidases encoded by Bifidobacterium breve UCC2003; A comparative analysis of function, structure and phylogeny. International Journal of Food Microbiology, 2016, 224, 55-65.	4.7	20
227	Phage-Host Interactions of Cheese-Making Lactic Acid Bacteria. Annual Review of Food Science and Technology, 2016, 7, 267-285.	9.9	41
228	Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment. Applied and Environmental Microbiology, 2016, 82, 980-991.	3.1	165
229	Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Scientific Reports, 2015, 5, 15782.	3.3	233
230	Glycan cross-feeding activities between bifidobacteria under in vitro conditions. Frontiers in Microbiology, 2015, 6, 1030.	3.5	74
231	Exploring Amino Acid Auxotrophy in Bifidobacterium bifidum PRL2010. Frontiers in Microbiology, 2015, 6, 1331.	3.5	45
232	Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium. PLoS ONE, 2015, 10, e0133661.	2.5	73
233	A genome-based identification approach for members of the genus Bifidobacterium. FEMS Microbiology Ecology, 2015, 91, .	2.7	12
234	A GntR-type transcriptional repressor controls sialic acid utilization in Bifidobacterium breve UCC2003. FEMS Microbiology Letters, 2015, 362, 1-9.	1.8	17

#	Article	IF	CITATIONS
235	Investigating the requirement for calcium during lactococcal phage infection. International Journal of Food Microbiology, 2015, 201, 47-51.	4.7	21
236	Exploring Vertical Transmission of Bifidobacteria from Mother to Child. Applied and Environmental Microbiology, 2015, 81, 7078-7087.	3.1	191
237	Structural investigation of cell wall polysaccharides of Lactobacillus delbrueckii subsp. bulgaricus 17. Carbohydrate Research, 2015, 413, 93-99.	2.3	10
238	Lactococcal 949 Group Phages Recognize a Carbohydrate Receptor on the Host Cell Surface. Applied and Environmental Microbiology, 2015, 81, 3299-3305.	3.1	35
239	Bifidobacteria of the Human Gut. , 2015, , 41-51.		13
240	Gram-positive phage-host interactions. Frontiers in Microbiology, 2015, 6, 61.	3.5	12
241	Productive mRNA stem loop-mediated transcriptional slippage: Crucial features in common with intrinsic terminators. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1984-93.	7.1	20
242	Next-generation sequencing as an approach to dairy starter selection. Dairy Science and Technology, 2015, 95, 545-568.	2.2	38
243	Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. International Journal of Food Microbiology, 2015, 203, 109-121.	4.7	63
244	Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation. Applied Microbiology and Biotechnology, 2015, 99, 6813-6829.	3.6	64
245	Insights into teichoic acid biosynthesis by <i>Bifidobacterium bifidum</i> PRL2010. FEMS Microbiology Letters, 2015, 362, fnv141.	1.8	15
246	Insights from genomes of representatives of the human gut commensal <scp><i>B</i></scp> <i>isifidobacterium bifidum</i> . Environmental Microbiology, 2015, 17, 2515-2531.	3.8	80
247	Novel Phage Group Infecting Lactobacillus delbrueckii subsp. lactis, as Revealed by Genomic and Proteomic Analysis of Bacteriophage Ldl1. Applied and Environmental Microbiology, 2015, 81, 1319-1326.	3.1	31
248	Discovery of a Conjugative Megaplasmid in Bifidobacterium breve. Applied and Environmental Microbiology, 2015, 81, 166-176.	3.1	22
249	Novel strategies to prevent or exploit phages in fermentations, insights from phage–host interactions. Current Opinion in Biotechnology, 2015, 32, 8-13.	6.6	35
250	Structure and Assembly of TP901-1 Virion Unveiled by Mutagenesis. PLoS ONE, 2015, 10, e0131676.	2.5	19
251	<i>Klebsiella pneumoniae</i> subsp. <i>pneumoniae</i> –bacteriophage combination from the caecal effluent of a healthy woman. PeerJ, 2015, 3, e1061.	2.0	38
252	Identification of Restriction-Modification Systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT Sequencing and Associated Methylome Analysis. PLoS ONE, 2014, 9, e94875.	2.5	25

#	Article	IF	CITATIONS
253	Autoinducer-2 Plays a Crucial Role in Gut Colonization and Probiotic Functionality of Bifidobacterium breve UCC2003. PLoS ONE, 2014, 9, e98111.	2.5	67
254	Current taxonomy of phages infecting lactic acid bacteria. Frontiers in Microbiology, 2014, 5, 7.	3.5	63
255	Bifidobacterium bifidum as an example of a specialized human gut commensal. Frontiers in Microbiology, 2014, 5, 437.	3.5	92
256	The Genome Sequence of Bifidobacterium moukalabense DSM 27321 Highlights the Close Phylogenetic Relatedness with the Bifidobacterium dentium Taxon. Genome Announcements, 2014, 2, .	0.8	6
257	Comparative genomics of the Bifidobacterium brevetaxon. BMC Genomics, 2014, 15, 170.	2.8	113
258	Differences in Lactococcal Cell Wall Polysaccharide Structure Are Major Determining Factors in Bacteriophage Sensitivity. MBio, 2014, 5, e00880-14.	4.1	98
259	The Plasmid Complement of Lactococcus lactis UC509.9 Encodes Multiple Bacteriophage Resistance Systems. Applied and Environmental Microbiology, 2014, 80, 4341-4349.	3.1	18
260	Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity. BMC Genomics, 2014, 15, 831.	2.8	26
261	Diversity, ecology and intestinal function of bifidobacteria. Microbial Cell Factories, 2014, 13, S4.	4.0	106
262	Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiology, 2014, 14, 282.	3.3	158
263	Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response. Applied and Environmental Microbiology, 2014, 80, 730-740.	3.1	67
264	Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. International Journal of Food Microbiology, 2014, 178, 50-59.	4.7	59
265	Bifidobacteria and humans: our special friends, from ecological to genomics perspectives. Journal of the Science of Food and Agriculture, 2014, 94, 163-168.	3.5	96
266	Characterization of virus-like particles associated with the human faecal and caecal microbiota. Research in Microbiology, 2014, 165, 803-812.	2.1	169
267	Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages. Applied and Environmental Microbiology, 2014, 80, 5623-5635.	3.1	23
268	The <i>Lactococcus lactis</i> plasmidome: much learnt, yet still lots to discover. FEMS Microbiology Reviews, 2014, 38, 1066-1088.	8.6	56
269	Expression of sortase-dependent pili of <i>Bifidobacterium bifidum</i> PRL2010 in response to environmental gut conditions. FEMS Microbiology Letters, 2014, 357, 23-33.	1.8	50
270	Genomic Characterization and Transcriptional Studies of the Starch-Utilizing Strain Bifidobacterium adolescentis 22L. Applied and Environmental Microbiology, 2014, 80, 6080-6090.	3.1	74

#	Article	IF	CITATIONS
271	Metabolism of Sialic Acid by Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2014, 80, 4414-4426.	3.1	130
272	Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium. Applied and Environmental Microbiology, 2014, 80, 6290-6302.	3.1	203
273	Transcription of Two Adjacent Carbohydrate Utilization Gene Clusters in Bifidobacterium breve UCC2003 Is Controlled by Lacl- and Repressor Open Reading Frame Kinase (ROK)-Type Regulators. Applied and Environmental Microbiology, 2014, 80, 3604-3614.	3.1	29
274	Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiology Ecology, 2014, 90, n/a-n/a.	2.7	71
275	T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature, 2014, 509, 361-365.	27.8	731
276	Investigation of the Evolutionary Development of the Genus Bifidobacterium by Comparative Genomics. Applied and Environmental Microbiology, 2014, 80, 6383-6394.	3.1	117
277	Impact of thermal and biocidal treatments on lactococcal 936-type phages. International Dairy Journal, 2014, 34, 56-61.	3.0	27
278	Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cellular and Molecular Life Sciences, 2014, 71, 183-203.	5.4	265
279	Progress in lactic acid bacterial phage research. Microbial Cell Factories, 2014, 13, S1.	4.0	35
280	Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus. PLoS ONE, 2014, 9, e107232.	2.5	74
281	Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science and Technology, 2013, 33, 93-109.	15.1	243
282	Bacteriophage Orphan DNA Methyltransferases: Insights from Their Bacterial Origin, Function, and Occurrence. Applied and Environmental Microbiology, 2013, 79, 7547-7555.	3.1	190
283	Role of sortase-dependent pili of <i>Bifidobacterium bifidum</i> PRL2010 in modulating bacterium–host interactions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11151-11156.	7.1	217
284	Metabolism of Four α-Glycosidic Linkage-Containing Oligosaccharides by Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2013, 79, 6280-6292.	3.1	54
285	Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants. Journal of Dairy Science, 2013, 96, 4945-4957.	3.4	42
286	Exploration of the Genomic Diversity and Core Genome of the Bifidobacterium adolescentis Phylogenetic Group by Means of a Polyphasic Approach. Applied and Environmental Microbiology, 2013, 79, 336-346.	3.1	19
287	Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiologica, 2013, 58, 291-299.	2.3	60
288	Transcriptional and functional characterization of genetic elements involved in galactoâ€oligosaccharide utilization by <i><scp>B</scp>ifidobacterium breve</i> â€ <scp>UCC</scp> 2003. Microbial Biotechnology, 2013, 6, 67-79.	4.2	73

#	Article	IF	CITATIONS
289	Selective carbohydrate utilization by lactobacilli and bifidobacteria. Journal of Applied Microbiology, 2013, 114, 1132-1146.	3.1	181
290	Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology, 2013, 24, 160-168.	6.6	1,101
291	Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe, 2013, 21, 9-17.	2.1	67
292	Transcriptomic and morphological profiling of Aspergillus fumigatus Af293 in response to antifungal activity produced by Lactobacillus plantarum 16. Microbiology (United Kingdom), 2013, 159, 2014-2024.	1.8	13
293	Complete Genome Sequence of the 936-Type Lactococcal Bacteriophage Caseus JM1. Genome Announcements, 2013, 1, e0005913.	0.8	1
294	Viral infection modulation and neutralization by camelid nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1371-9.	7.1	45
295	Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses. Applied and Environmental Microbiology, 2013, 79, 4786-4798.	3.1	42
296	Comparative Genomics of Bifidobacterium animalis subsp. lactis Reveals a Strict Monophyletic Bifidobacterial Taxon. Applied and Environmental Microbiology, 2013, 79, 4304-4315.	3.1	74
297	Identification of a New P335 Subgroup through Molecular Analysis of Lactococcal Phages Q33 and BM13. Applied and Environmental Microbiology, 2013, 79, 4401-4409.	3.1	48
298	Complete Genome Sequence of Lactobacillus plantarum Strain 16, a Broad-Spectrum Antifungal-Producing Lactic Acid Bacterium. Genome Announcements, 2013, 1, .	0.8	41
299	Identification and characterization of an oleate hydratase-encoding gene from <i><i>Bifidobacterium breve</i></i> . Bioengineered, 2013, 4, 313-321.	3.2	40
300	The Lactococcal Phages Tuc2009 and TP901-1 Incorporate Two Alternate Forms of Their Tail Fiber into Their Virions for Infection Specialization*. Journal of Biological Chemistry, 2013, 288, 5581-5590.	3.4	79
301	Structure and Functional Analysis of the Host Recognition Device of Lactococcal Phage Tuc2009. Journal of Virology, 2013, 87, 8429-8440.	3.4	46
302	Tale of the unseen phage. Bacteriophage, 2013, 3, e25985.	1.9	1
303	Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny. Applied and Environmental Microbiology, 2013, 79, 4385-4392.	3.1	99
304	Complete Genome of Lactococcus lactis subsp. cremoris UC509.9, Host for a Model Lactococcal P335 Bacteriophage. Genome Announcements, 2013, 1, .	0.8	39
305	High-Quality Draft Genome Sequence of Bifidobacterium longum E18, Isolated from a Healthy Adult. Genome Announcements, 2013, 1, .	0.8	7
306	Transposon Mutagenesis in Bifidobacterium breve: Construction and Characterization of a Tn5 Transposon Mutant Library for Bifidobacterium breve UCC2003. PLoS ONE, 2013, 8, e64699.	2.5	41

#	Article	IF	CITATIONS
307	Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol. PLoS ONE, 2013, 8, e68739.	2.5	257
308	In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to l'-Lactams. PLoS ONE, 2013, 8, e82653.	2.5	17
309	Structural Aspects of the Interaction of Dairy Phages with Their Host Bacteria. Viruses, 2012, 4, 1410-1424.	3.3	33
310	Analysis of Predicted Carbohydrate Transport Systems Encoded by Bifidobacterium bifidum PRL2010. Applied and Environmental Microbiology, 2012, 78, 5002-5012.	3.1	63
311	A Two-Component Regulatory System Controls Autoregulated Serpin Expression in Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2012, 78, 7032-7041.	3.1	26
312	Genome Sequence of Parascardovia denticolens IPLA 20019, Isolated from Human Breast Milk. Journal of Bacteriology, 2012, 194, 4776-4777.	2.2	9
313	Identification of iron-regulated genes of Bifidobacterium breve UCC2003 as a basis for controlled gene expression. Bioengineered, 2012, 3, 159-169.	3.2	17
314	Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioengineered, 2012, 3, 73-79.	3.2	54
315	Discovering Novel Bile Protection Systems in Bifidobacterium breve UCC2003 through Functional Genomics. Applied and Environmental Microbiology, 2012, 78, 1123-1131.	3.1	58
316	Bifidobacterium breve UCC2003 surface exopolysaccharide production is a beneficial trait mediating commensal-host interaction through immune modulation and pathogen protection. Gut Microbes, 2012, 3, 420-425.	9.8	67
317	A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2012, 78, 5258-5269.	3.1	22
318	Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Frontiers in Microbiology, 2012, 3, 335.	3.5	58
319	Structure of the phage TP901-1 1.8ÂMDa baseplate suggests an alternative host adhesion mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8954-8958.	7.1	121
320	Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes. Virology, 2012, 434, 143-150.	2.4	32
321	High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting. PLoS ONE, 2012, 7, e30940.	2.5	116
322	Diversity of Bifidobacteria within the Infant Gut Microbiota. PLoS ONE, 2012, 7, e36957.	2.5	512
323	Comparative analysis of two antifungal <i>Lactobacillus plantarum</i> isolates and their application as bioprotectants in refrigerated foods. Journal of Applied Microbiology, 2012, 113, 1417-1427.	3.1	50
324	Host–microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends in Microbiology, 2012, 20, 467-476.	7.7	164

#	Article	IF	CITATIONS
325	Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2108-2113.	7.1	450
326	Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, 178-184.	27.8	2,618
327	A bileâ€inducible membrane protein mediates bifidobacterial bile resistance. Microbial Biotechnology, 2012, 5, 523-535.	4.2	28
328	An efficient and reproducible method for transformation of genetically recalcitrant bifidobacteria. FEMS Microbiology Letters, 2012, 333, 146-152.	1.8	23
329	Fibrinogenâ€binding and plateletâ€aggregation activities of a <i>Lactobacillus salivarius</i> septicaemia isolate are mediated by a novel fibrinogenâ€binding protein. Molecular Microbiology, 2012, 85, 862-877.	2.5	45
330	Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut. PLoS ONE, 2012, 7, e44229.	2.5	123
331	Biotechnological Production of Vitamin B2-Enriched Bread and Pasta. Journal of Agricultural and Food Chemistry, 2011, 59, 8013-8020.	5.2	121
332	Insights into Physiological and Genetic Mupirocin Susceptibility in Bifidobacteria. Applied and Environmental Microbiology, 2011, 77, 3141-3146.	3.1	37
333	B-Group vitamin production by lactic acid bacteria - current knowledge and potential applications. Journal of Applied Microbiology, 2011, 111, 1297-1309.	3.1	359
334	Metabolism of a plant derived galactoseâ€containing polysaccharide by <i>Bifidobacterium breve</i> UCC2003. Microbial Biotechnology, 2011, 4, 403-416.	4.2	82
335	Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems. Plasmid, 2011, 66, 129-135.	1.4	17
336	Genomics and ecological overview of the genus Bifidobacterium. International Journal of Food Microbiology, 2011, 149, 37-44.	4.7	140
337	Progress in genomics, metabolism and biotechnology of bifidobacteria. International Journal of Food Microbiology, 2011, 149, 4-18.	4.7	72
338	The impact of bacteriophages on probiotic bacteria and gut microbiota diversity. Genes and Nutrition, 2011, 6, 205-207.	2.5	52
339	Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 2011, 6, 285-306.	2.5	628
340	Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system. Microbial Cell Factories, 2011, 10, 66.	4.0	28
341	Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microbial Cell Factories, 2011, 10, S16.	4.0	84
342	Bacteriophages as biocontrol agents of food pathogens. Current Opinion in Biotechnology, 2011, 22, 157-163.	6.6	169

#	Article	IF	CITATIONS
343	Complete Genome Sequence of Bifidobacterium animalis subsp. lactis BLC1. Journal of Bacteriology, 2011, 193, 6387-6388.	2.2	19
344	Genome Sequence of Bifidobacterium breve DPC 6330, a Strain Isolated from the Human Intestine. Journal of Bacteriology, 2011, 193, 6799-6800.	2.2	7
345	Global Genome Transcription Profiling of Bifidobacterium bifidum PRL2010 under <i>In Vitro</i> Conditions and Identification of Reference Genes for Quantitative Real-Time PCR. Applied and Environmental Microbiology, 2011, 77, 8578-8587.	3.1	27
346	Ability of Bifidobacterium breve To Grow on Different Types of Milk: Exploring the Metabolism of Milk through Genome Analysis. Applied and Environmental Microbiology, 2011, 77, 7408-7417.	3.1	42
347	Complete Genome Sequence of Bifidobacterium bifidum S17. Journal of Bacteriology, 2011, 193, 301-302.	2.2	35
348	Cellodextrin Utilization by <i>Bifidobacterium breve</i> UCC2003. Applied and Environmental Microbiology, 2011, 77, 1681-1690.	3.1	74
349	Functional genome analysis of <i>Bifidobacterium breve</i> UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11217-11222.	7.1	328
350	Genetic strategies for mucin metabolism in <i>Bifidobacterium bifidum</i> PRL2010: An example of possible human-microbe co-evolution. Gut Microbes, 2011, 2, 183-189.	9.8	67
351	Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4586-4591.	7.1	1,418
352	Isolation of a Virulent Lactobacillus brevis Phage and Its Application in the Control of Beer Spoilage. Journal of Food Protection, 2011, 74, 2157-2161.	1.7	44
353	Stress Responses of Bifidobacteria. , 2011, , 323-347.		3
354	Risk Assessment of Genetically Modified Lactic Acid Bacteria Using the Concept of Substantial Equivalence. Current Microbiology, 2010, 61, 590-595.	2.2	22
355	Analyses of bifidobacterial prophage-like sequences. Antonie Van Leeuwenhoek, 2010, 98, 39-50.	1.7	17
356	Ribose utilization by the human commensal <i>Bifidobacterium breve</i> UCC2003. Microbial Biotechnology, 2010, 3, 311-323.	4.2	54
357	Characterization of the Serpin-Encoding Gene of <i>Bifidobacterium breve</i> 210B. Applied and Environmental Microbiology, 2010, 76, 3206-3219.	3.1	66
358	Genome analysis of <i>Bifidobacterium bifidum</i> PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19514-19519.	7.1	324
359	Intertwinement of stress response regulons in Bifidobacterium breve UCC2003. Gut Microbes, 2010, 1, 100-102.	9.8	12
360	Comparative genomics of the genus Bifidobacterium. Microbiology (United Kingdom), 2010, 156, 3243-3254.	1.8	116

#	Article	IF	CITATIONS
361	Orally Administered Bifidobacteria as Vehicles for Delivery of Agents to Systemic Tumors. Molecular Therapy, 2010, 18, 1397-1407.	8.2	101
362	Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli. Journal of Structural Biology, 2010, 172, 75-84.	2.8	35
363	Genome analysis of the Clostridium difficile phage ΦCD6356, a temperate phage of the Siphoviridae family. Gene, 2010, 462, 34-43.	2.2	50
364	Bifidobacteria: from ecology to genomics. Frontiers in Bioscience - Landmark, 2009, Volume, 4673.	3.0	33
365	Exploring the Diversity of the Bifidobacterial Population in the Human Intestinal Tract. Applied and Environmental Microbiology, 2009, 75, 1534-1545.	3.1	270
366	An Interactive Regulatory Network Controls Stress Response in <i>Bifidobacterium breve</i> UCC2003. Journal of Bacteriology, 2009, 191, 7039-7049.	2.2	60
367	Microbial diversity in the human intestine and novel insights from metagenomics. Frontiers in Bioscience - Landmark, 2009, Volume, 3214.	3.0	72
368	Characterization of Two Novel α-Glucosidases from <i>Bifidobacterium breve</i> UCC2003. Applied and Environmental Microbiology, 2009, 75, 1135-1143.	3.1	54
369	Bile-Inducible Efflux Transporter from <i>Bifidobacterium longum</i> NCC2705, Conferring Bile Resistance. Applied and Environmental Microbiology, 2009, 75, 3153-3160.	3.1	66
370	Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in <i>Bifidobacterium breve</i> UCC2003. Microbial Biotechnology, 2009, 2, 321-332.	4.2	102
371	Bacterial vitamin B2, B11 and B12 overproduction: An overview. International Journal of Food Microbiology, 2009, 133, 1-7.	4.7	140
372	Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME Journal, 2009, 3, 745-751.	9.8	128
373	Genome-scale analyses of health-promoting bacteria: probiogenomics. Nature Reviews Microbiology, 2009, 7, 61-71.	28.6	400
374	Comparative Analyses of Prophage-Like Elements Present in Bifidobacterial Genomes. Applied and Environmental Microbiology, 2009, 75, 6929-6936.	3.1	45
375	The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity. PLoS Genetics, 2009, 5, e1000785.	3.5	141
376	Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek, 2008, 94, 35-50.	1.7	182
377	Lactic acid bacteria with potential to eliminate fungal spoilage in foods. Journal of Applied Microbiology, 2008, 104, 915-923.	3.1	157
378	Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiology, 2008, 8, 161.	3.3	64

#	Article	IF	CITATIONS
379	Characterization of Endogenous Plasmids from <i>Lactobacillus salivarius</i> UCC118. Applied and Environmental Microbiology, 2008, 74, 3216-3228.	3.1	46
380	Lactobacillus hordei sp. nov., a bacteriocinogenic strain isolated from malted barley. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2013-2017.	1.7	29
381	Identification and Characterization of Lactococcal-Prophage-Carried Superinfection Exclusion Genes. Applied and Environmental Microbiology, 2008, 74, 6206-6215.	3.1	95
382	Characterization of ApuB, an Extracellular Type II Amylopullulanase from <i>Bifidobacterium breve</i> UCC2003. Applied and Environmental Microbiology, 2008, 74, 6271-6279.	3.1	102
383	A Topological Model of the Baseplate of Lactococcal Phage Tuc2009. Journal of Biological Chemistry, 2008, 283, 2716-2723.	3.4	51
384	Bioprotective Potential of Lactic Acid Bacteria in Malting and Brewing. Journal of Food Protection, 2008, 71, 1724-1733.	1.7	61
385	Lactobacillus phylogenomics - towards a reclassification of the genus. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2945-2954.	1.7	95
386	Identification and Characterization of a Fructose Phosphotransferase System in Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2007, 73, 545-553.	3.1	83
387	Distribution of Megaplasmids in Lactobacillus salivarius and Other Lactobacilli. Journal of Bacteriology, 2007, 189, 6128-6139.	2.2	53
388	Molecular Characterization of hsp20 , Encoding a Small Heat Shock Protein of Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2007, 73, 4695-4703.	3.1	51
389	Molecular Dissection of a Bifidobacterial Replicon. Applied and Environmental Microbiology, 2007, 73, 7858-7866.	3.1	29
390	High-Throughput Isolation of Bacteriocin-Producing Lactic Acid Bacteria, with Potential Application in the Brewing Industry. Journal of the Institute of Brewing, 2007, 113, 256-262.	2.3	19
391	Complete Genome Sequence of the Prototype Lactic Acid Bacterium <i>Lactococcus lactis</i> subsp. <i>cremoris</i> MG1363. Journal of Bacteriology, 2007, 189, 3256-3270.	2.2	362
392	Comparative Analyses of Prophage-Like Elements Present in Two <i>Lactococcus lactis</i> Strains. Applied and Environmental Microbiology, 2007, 73, 7771-7780.	3.1	52
393	Genomics of <i>Actinobacteria</i> : Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 2007, 71, 495-548.	6.6	852
394	The genusLactobacillus– a genomic basis for understanding its diversity. FEMS Microbiology Letters, 2007, 269, 22-28.	1.8	157
395	From bacterial genome to functionality; case bifidobacteria. International Journal of Food Microbiology, 2007, 120, 2-12.	4.7	67
396	Exploiting Bifidobacterium genomes: The molecular basis of stress response. International Journal of Food Microbiology, 2007, 120, 13-24.	4.7	55

#	Article	IF	CITATIONS
397	Characterization of plasmid pASV479 from Bifidobacterium pseudolongum subsp. globosum and its use for expression vector construction. Plasmid, 2007, 58, 140-147.	1.4	25
398	Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. Journal of Cereal Science, 2007, 45, 309-318.	3.7	278
399	Bacteriophages in dairy products: Pros and cons. Biotechnology Journal, 2007, 2, 450-455.	3.5	36
400	Functional analysis of the pBC1 replicon from Bifidobacterium catenulatum L48. Applied Microbiology and Biotechnology, 2007, 76, 1395-1402.	3.6	53
401	Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Van Leeuwenhoek, 2007, 91, 351-372.	1.7	95
402	Screening for and Identification of Starch-, Amylopectin-, and Pullulan-Degrading Activities in Bifidobacterial Strains. Applied and Environmental Microbiology, 2006, 72, 5289-5296.	3.1	152
403	A general method for selection of riboflavin-overproducing food grade micro-organisms. Microbial Cell Factories, 2006, 5, 24.	4.0	119
404	Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species. FEMS Microbiology Letters, 2006, 261, 253-261.	1.8	63
405	How high G+C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiology Reviews, 2006, 30, 734-759.	8.6	48
406	Characterization of the lytic–lysogenic switch of the lactococcal bacteriophage Tuc2009. Virology, 2006, 347, 434-446.	2.4	18
407	A genetic dissection of the LlaJI restriction cassette reveals insights on a novel bacteriophage resistance system. BMC Microbiology, 2006, 6, 40.	3.3	20
408	Identification of the Lower Baseplate Protein as the Antireceptor of the Temperate Lactococcal Bacteriophages TP901-1 and Tuc2009. Journal of Bacteriology, 2006, 188, 55-63.	2.2	61
409	Comparative and Functional Analysis of Sortase-Dependent Proteins in the Predicted Secretome of <i>Lactobacillus salivarius</i> UCC118. Applied and Environmental Microbiology, 2006, 72, 4143-4153.	3.1	145
410	Analysis of bifidobacterial evolution using a multilocus approach. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2783-2792.	1.7	154
411	Multireplicon genome architecture of Lactobacillus salivarius. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6718-6723.	7.1	216
412	Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter. Microbiology (United Kingdom), 2006, 152, 3497-3505.	1.8	34
413	Diversity of the genus Lactobacillus revealed by comparative genomics of five species. Microbiology (United Kingdom), 2006, 152, 3185-3196.	1.8	118
414	Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species. Applied and Environmental Microbiology, 2006, 72, 3793-3796.	3.1	34

#	Article	IF	CITATIONS
415	The Riboflavin Transporter RibU in Lactococcus lactis : Molecular Characterization of Gene Expression and the Transport Mechanism. Journal of Bacteriology, 2006, 188, 2752-2760.	2.2	71
416	Anatomy of a Lactococcal Phage Tail. Journal of Bacteriology, 2006, 188, 3972-3982.	2.2	72
417	Sequence Analysis of the Lactococcal Plasmid pNP40: a Mobile Replicon for Coping with Environmental Hazards. Journal of Bacteriology, 2006, 188, 6629-6639.	2.2	48
418	Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei. Applied and Environmental Microbiology, 2006, 72, 3130-3146.	3.1	75
419	Polyphasic analysis indicates that Lactobacillus salivarius subsp. salivarius and Lactobacillus salivarius subsp. salicinius do not merit separate subspecies status. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2397-2403.	1.7	50
420	Lactococcus lactisis capable of improving the riboflavin status in deficient rats. British Journal of Nutrition, 2005, 94, 262-267.	2.3	38
421	Fermented functional foods based on probiotics and their biogenic metabolites. Current Opinion in Biotechnology, 2005, 16, 198-203.	6.6	375
422	Enhancing the Microbiological Stability of Malt and Beer - A Review. Journal of the Institute of Brewing, 2005, 111, 355-371.	2.3	155
423	A dichotomous epigenetic mechanism governs expression of the LlaJI restriction/modification system. Molecular Microbiology, 2005, 57, 1532-1544.	2.5	16
424	Getting better with bifidobacteria. Journal of Applied Microbiology, 2005, 98, 1303-1315.	3.1	274
425	In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation. Journal of Applied Microbiology, 2005, 99, 670-681.	3.1	66
426	BlastXtract-a new way of exploring translated searches. Bioinformatics, 2005, 21, 3667-3668.	4.1	3
427	Genetic and Transcriptional Organization of the clpC Locus in Bifidobacterium breve UCC 2003. Applied and Environmental Microbiology, 2005, 71, 6282-6291.	3.1	26
428	The clpB gene of Bifidobacterium breve UCC 2003: transcriptional analysis and first insights into stress induction. Microbiology (United Kingdom), 2005, 151, 2861-2872.	1.8	40
429	Structural Characterization and Assembly of the Distal Tail Structure of the Temperate Lactococcal Bacteriophage TP901-1. Journal of Bacteriology, 2005, 187, 4187-4197.	2.2	57
430	The ClgR Protein Regulates Transcription of the clpP Operon in Bifidobacterium breve UCC 2003. Journal of Bacteriology, 2005, 187, 8411-8426.	2.2	41
431	Lactobacillus rossii sp. nov., isolated from wheat sourdough. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 35-40.	1.7	83
432	Probing Direct Interactions between CodY and the <i>oppD</i> Promoter of <i>Lactococcus lactis</i> . Journal of Bacteriology, 2005, 187, 512-521.	2.2	68

#	Article	IF	CITATIONS
433	Genetic Characterization of the Bifidobacterium breve UCC 2003 hrcA Locus. Applied and Environmental Microbiology, 2005, 71, 8998-9007.	3.1	29
434	Prophage-Like Elements in Bifidobacteria: Insights from Genomics, Transcription, Integration, Distribution, and Phylogenetic Analysis. Applied and Environmental Microbiology, 2005, 71, 8692-8705.	3.1	70
435	Transcriptional Regulation and Characterization of a Novel β-Fructofuranosidase-Encoding Gene from Bifidobacterium breve UCC2003. Applied and Environmental Microbiology, 2005, 71, 3475-3482.	3.1	104
436	Gene Structure and Transcriptional Organization of the dnaK Operon of Bifidobacterium breve UCC 2003 and Application of the Operon in Bifidobacterial Tracing. Applied and Environmental Microbiology, 2005, 71, 487-500.	3.1	69
437	Macrolide Resistance Mediated by a <i>Bifidobacterium breve</i> Membrane Protein. Antimicrobial Agents and Chemotherapy, 2005, 49, 4379-4381.	3.2	20
438	Ingestion of Milk Fermented by Genetically Modified Lactococcus lactis Improves the Riboflavin Status of Deficient Rats. Journal of Dairy Science, 2005, 88, 3435-3442.	3.4	39
439	Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR. Applied and Environmental Microbiology, 2005, 71, 3049-3059.	3.1	60
440	<i>Bifidobacterium lactis</i> DSM 10140: Identification of the <i>atp</i> (<i>atpBEFHAGDC</i>) Operon and Analysis of Its Genetic Structure, Characteristics, and Phylogeny. Applied and Environmental Microbiology, 2004, 70, 3110-3121.	3.1	94
441	Lactococcal Plasmid pNP40 Encodes a Novel, Temperature-Sensitive Restriction-Modification System. Applied and Environmental Microbiology, 2004, 70, 5546-5556.	3.1	59
442	Characterization of the groEL and groES Loci in Bifidobacterium breve UCC 2003: Genetic, Transcriptional, and Phylogenetic Analyses. Applied and Environmental Microbiology, 2004, 70, 6197-6209.	3.1	95
443	Bacteriophage Tuc2009 Encodes a Tail-Associated Cell Wall-Degrading Activity. Journal of Bacteriology, 2004, 186, 3480-3491.	2.2	83
444	Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. Journal of Applied Microbiology, 2004, 96, 521-534.	3.1	139
445	Transcriptional analysis of bacteriocin production by malt isolateLactobacillus sakei5. FEMS Microbiology Letters, 2004, 235, 377-384.	1.8	16
446	Molecular and transcriptional analysis of the temperate lactococcal bacteriophage Tuc2009. Virology, 2004, 329, 40-52.	2.4	40
447	Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek, 2004, 86, 205-223.	1.7	164
448	Application of Biological Acidification to Improve the Quality and Processability of Wort Produced from 50% Raw Barley. Journal of the Institute of Brewing, 2004, 110, 133-140.	2.3	27
449	Investigating the Antimicrobial Efficacy of a Lactococcal Bacteriocin for the Development of Microbiologically Stable Beer. Journal of the Institute of Brewing, 2004, 110, 181-188.	2.3	10
450	Multivitamin production in Lactococcus lactis using metabolic engineering. Metabolic Engineering, 2004, 6, 109-115.	7.0	117

#	Article	IF	CITATIONS
451	The impact of bacteriophage genomics. Current Opinion in Biotechnology, 2004, 15, 94-99.	6.6	29
452	Riboflavin Production in Lactococcus lactis : Potential for In Situ Production of Vitamin-Enriched Foods. Applied and Environmental Microbiology, 2004, 70, 5769-5777.	3.1	209
453	Transcriptional analysis of bacteriocin production by malt isolate Lactobacillus sakei 5. FEMS Microbiology Letters, 2004, 235, 377-384.	1.8	3
454	Purification and characterisation of a lactococcal aminoacylase. Archives of Microbiology, 2003, 179, 402-408.	2.2	8
455	Isolation and characterisation of a novel bacteriocin produced byBacillus thuringiensisstrain B439. FEMS Microbiology Letters, 2003, 220, 127-131.	1.8	64
456	The <i>Bacillus subtilis</i> transition state regulator AbrB binds to the âÂ^Â'35 promoter region of <i>comK</i> . FEMS Microbiology Letters, 2003, 218, 299-304.	1.8	46
457	Identification of Two-Component Regulatory Systems in Bifidobacterium infantis by Functional Complementation and Degenerate PCR Approaches. Applied and Environmental Microbiology, 2003, 69, 4219-4226.	3.1	16
458	Investigation of Protein Export in <i>Bifidobacteriumbreve</i> UCC2003. Applied and Environmental Microbiology, 2003, 69, 6994-7001.	3.1	38
459	Functional Characterization of a Composite BacteriocinLocus from Malt Isolate Lactobacillus sakei 5. Applied and Environmental Microbiology, 2003, 69, 7194-7203.	3.1	78
460	The Bacillus subtilis transition state regulator AbrB binds to the â^'35 promoter region of comK. FEMS Microbiology Letters, 2003, 218, 299-304.	1.8	6
461	Comparative Genomics of Bacteriophage Infecting Lactic Acid Bacteria. , 2003, , 45-94.		1
462	Comparative Genomics of Bacteriophage Infecting Lactic Acid Bacteria. , 2003, , 45-94.		0
463	Molecular Characterization of Cadmium Resistance in <i>Streptococcus thermophilus</i> Strain 4134: an Example of Lateral Gene Transfer. Applied and Environmental Microbiology, 2002, 68, 5508-5516.	3.1	43
464	Discovering lactic acid bacteria by genomics. , 2002, 82, 29-58.		74
465	Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118 The GenBank accession number for the sequence reported in this paper is AF408405 Microbiology (United) Tj ETQq1 1 0.7843	814 ⁸ rgBT /	Overlock 10
466	The Dilemma of Phage Taxonomy Illustrated by Comparative Genomics of Sfi21-Like Siphoviridae in Lactic Acid Bacteria. Journal of Bacteriology, 2002, 184, 6026-6036.	2.2	108
467	Antimicrobial-Producing Lactic Acid Bacteria Isolated from Raw Barley and Sorghum. Journal of the Institute of Brewing, 2002, 108, 169-177.	2.3	48
468	Bacteriophage-derived genetic tools for use in lactic acid bacteria. International Dairy Journal, 2002, 12, 3-15.	3.0	20

#	Article	IF	CITATIONS
469	Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Molecular Microbiology, 2002, 43, 509-520.	2.5	122
470	Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek, 2002, 82, 217-235.	1.7	112
471	An analysis of bacteriocins produced by lactic acid bacteria isolated from malted barley. Journal of Applied Microbiology, 2001, 91, 131-138.	3.1	85
472	Comparative Genomics Reveals Close Genetic Relationships between Phages from Dairy Bacteria and Pathogenic Streptococci: Evolutionary Implications for Prophage-Host Interactions. Virology, 2001, 288, 325-341.	2.4	129
473	Insertional mutagenesis of an industrial strain ofStreptococcus thermophilus. FEMS Microbiology Letters, 2001, 200, 85-90.	1.8	9
474	Improvement and Optimization of Two Engineered Phage Resistance Mechanisms in Lactococcus lactis. Applied and Environmental Microbiology, 2001, 67, 608-616.	3.1	105
475	Characterisation of Antimicrobial Producing Lactic Acid Bacteria from Malted Barley. Journal of the Institute of Brewing, 2000, 106, 403-410.	2.3	27
476	Identification of four loci isolated from twoStreptococcus thermophilusphage genomes responsible for mediating bacteriophage resistance. FEMS Microbiology Letters, 2000, 182, 271-277.	1.8	58
477	Identification and characterisation of a gene encoding aminoacylase activity fromLactococcus lactisMG1363. FEMS Microbiology Letters, 2000, 183, 177-182.	1.8	14
478	Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363 The GenBank accession numbers for the sequences of the six 2CSs and surrounding ORFs determined in this work are AF172649, AF176556, AF178425, AF172650, AF176557 and AF176809 for systems $A\hat{a}\in$ "F, respectively Microbiology (United Kingdom), 2000, 146, 935-947.	1.8	72
479	The Streptococcus thermophilus Autolytic Phenotype Results from a Leaky Prophage. Applied and Environmental Microbiology, 2000, 66, 558-565.	3.1	50
480	Identification and characterisation of a gene encoding aminoacylase activity from Lactococcus lactis MG1363. FEMS Microbiology Letters, 2000, 183, 177-182.	1.8	1
481	Molecular characterization of the lactococcal plasmid pCIS3: natural stacking of specificity subunits of a type I restriction/modification system in a single lactococcal strain The GenBank accession numbers for the sequences reported in this paper are AF153410–AF153414 Microbiology (United) Tj ETQq1 1	d: ? 84314	4 fgBT /Over
482	Structural and functional analysis of pCI65st, a 6·5 kb plasmid from Streptococcus thermophilus NDI-6. Microbiology (United Kingdom), 1999, 145, 127-134.	1.8	52
483	From DNA sequence to application: possibilities and complications. Antonie Van Leeuwenhoek, 1999, 76, 3-23.	1.7	12
484	A Comparative Study of Malthouse and Brewhouse Microflora. Journal of the Institute of Brewing, 1999, 105, 55-61.	2.3	51
485	Identification and Characterization of a Lysis Module Present in a Large Proportion of Bacteriophages Infecting <i>Streptococcus thermophilus</i> . Applied and Environmental Microbiology, 1999, 65, 569-577.	3.1	42
486	Molecular Characterization of a Phage-Encoded Resistance System in Lactococcus lactis. Applied and Environmental Microbiology, 1999, 65, 1891-1899.	3.1	55

DOUWE VAN SINDEREN

#	Article	IF	CITATIONS
487	Sequence analysis and characterization of Ã ₂ O1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. Microbiology (United Kingdom), 1997, 143, 3417-3429.	1.8	111
488	Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Applied and Environmental Microbiology, 1997, 63, 3246-3253.	3.1	110
489	Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Molecular Microbiology, 1996, 19, 1343-1355.	2.5	182
490	Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis. Molecular Microbiology, 1996, 22, 75-85.	2.5	61
491	A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Molecular Microbiology, 1995, 15, 55-63.	2.5	165
492	Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Molecular Microbiology, 1995, 15, 203-211.	2.5	32
493	Differential expression of two closely related deoxyribonuclease genes, nucA and nucB, in Bacillus subtilis. Molecular Microbiology, 1995, 15, 213-223.	2.5	33
494	comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Molecular Microbiology, 1995, 15, 455-462.	2.5	225
495	Molecular genetics of bacteriophage and natural phage defence systems in the genus Lactococcus. International Dairy Journal, 1995, 5, 905-947.	3.0	67
496	Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Molecular Microbiology, 1994, 11, 695-703.	2.5	65
497	Characterization of the srfA locus of Bacillus subtilis: only the valine-activating domain of srfA is involved in the establishment of genetic competence. Molecular Microbiology, 1993, 8, 833-841.	2.5	54
498	Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Molecular Microbiology, 1993, 8, 821-831.	2.5	308
499	Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. Molecular Genetics and Genomics, 1990, 224, 396-404.	2.4	61
500	An improved β-galactosidase α-complementation system for molecular cloning in Bacillus subtilis. Gene, 1990, 93, 41-47.	2.2	33
501	Cell Wall-Associated Proteases of <i>Streptococcus cremoris</i> Wg2. Applied and Environmental Microbiology, 1987, 53, 853-859.	3.1	62
502	Bifi dobacteria: the Model Human Gut Commensal. , 0, , 35-50.		3