
James D Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8054197/publications.pdf Version: 2024-02-01

IAMES D CDIFFIN

#	Article	IF	CITATIONS
1	Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2. Leukemia, 2022, 36, 210-220.	3.3	12
2	Inhibition of theÂdeubiquitinating enzyme USP47 as a novel targeted therapy for hematologic malignancies expressing mutant EZH2. Leukemia, 2022, 36, 1048-1057.	3.3	5
3	BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma. Blood Cancer Journal, 2022, 12, .	2.8	11
4	The CRTC1-MAML2 fusion is the major oncogenic driver in mucoepidermoid carcinoma. JCI Insight, 2021, 6, .	2.3	34
5	3D tissue engineered plasma cultures support leukemic proliferation and induces drug resistance. Leukemia and Lymphoma, 2021, 62, 1-9.	0.6	5
6	Essential role of the histone lysine demethylase KDM4A in the biology of malignant pleural mesothelioma (MPM). British Journal of Cancer, 2021, 125, 582-592.	2.9	4
7	Inhibitors of the Transcription Factor STAT3 Decrease Growth and Induce Immune Response Genes in Models of Malignant Pleural Mesothelioma (MPM). Cancers, 2021, 13, 7.	1.7	13
8	Evaluation of ERK as a therapeutic target in acute myelogenous leukemia. Leukemia, 2020, 34, 625-629.	3.3	9
9	Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharmaceutical Research, 2020, 37, 167.	1.7	102
10	Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Scientific Reports, 2020, 10, 5324.	1.6	69
11	Current therapies under investigation for COVID-19: potential COVID-19 treatments. Canadian Journal of Physiology and Pharmacology, 2020, 98, 483-489.	0.7	6
12	Effects of the multiâ€kinase inhibitor midostaurin in combination with chemotherapy in models of acute myeloid leukaemia. Journal of Cellular and Molecular Medicine, 2020, 24, 2968-2980.	1.6	16
13	The combination of FLT3 and SYK kinase inhibitors is toxic to leukaemia cells with CBL mutations. Journal of Cellular and Molecular Medicine, 2020, 24, 2145-2156.	1.6	2
14	Inhibition of the deubiquitinase USP10 induces degradation of SYK. British Journal of Cancer, 2020, 122, 1175-1184.	2.9	19
15	Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLUâ€285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies. British Journal of Haematology, 2019, 187, 488-501.	1.2	30
16	Spotlight on midostaurin in the treatment of FLT3-mutated acute myeloid leukemia and systemic mastocytosis: design, development, and potential place in therapy. OncoTargets and Therapy, 2018, Volume 11, 175-182.	1.0	15
17	Midostaurin, a Natural Product-Derived Kinase Inhibitor Recently Approved for the Treatment of Hematological Malignancies. Biochemistry, 2018, 57, 477-478.	1.2	15
18	A Chemoproteomic Approach to Query the Degradable Kinome Using a Multi-kinase Degrader. Cell Chemical Biology, 2018, 25, 88-99.e6.	2.5	313

#	Article	IF	CITATIONS
19	Notch1 activation enhances proliferation via activation of cdc2 and delays differentiation of myeloid progenitors. Leukemia Research, 2018, 72, 34-44.	0.4	3
20	Structure-guided development of covalent TAK1 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 838-846.	1.4	28
21	Studies of TAK1-centered polypharmacology with novel covalent TAK1 inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 1320-1328.	1.4	17
22	Inhibition of USP10 induces degradation of oncogenic FLT3. Nature Chemical Biology, 2017, 13, 1207-1215.	3.9	89
23	Acute myeloid leukemia cells require 6-phosphogluconate dehydrogenase for cell growth and NADPH-dependent metabolic reprogramming. Oncotarget, 2017, 8, 67639-67650.	0.8	26
24	Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget, 2017, 8, 52026-52044.	0.8	19
25	Inhibition of SDF-1-induced migration of oncogene-driven myeloid leukemia by the L-RNA aptamer (Spiegelmer), NOX-A12, and potentiation of tyrosine kinase inhibition. Oncotarget, 2017, 8, 109973-109984.	0.8	19
26	Dual inhibition of AKT/FLT3-ITD by A674563 overcomes FLT3 ligand-induced drug resistance in FLT3-ITD positive AML. Oncotarget, 2016, 7, 29131-29142.	0.8	21
27	The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell, 2016, 29, 574-586.	7.7	227
28	<i>Blood</i> 's 70th anniversary: arsenic—from poison pill to magic bullet. Blood, 2016, 127, 1729-1730.	0.6	7
29	Discovery of a Highly Potent and Selective Indenoindolone Type 1 Pan-FLT3 Inhibitor. ACS Medicinal Chemistry Letters, 2016, 7, 476-481.	1.3	17
30	Simultaneous inhibition of Vps34 kinase would enhance PI3Kδ inhibitor cytotoxicity in the B-cell malignancies. Oncotarget, 2016, 7, 53515-53525.	0.8	19
31	Characterization of selective and potent PI3Kδ inhibitor (PI3KD-IN-015) for B-Cell malignances. Oncotarget, 2016, 7, 32641-32651.	0.8	7
32	FLT3 Splice Variant (FLT3Va) As a Potential Immunotherapeutic Target in Patients with Acute Myeloid Leukemia (AML). Blood, 2016, 128, 1681-1681.	0.6	0
33	Inhibition of USP10 Induces Degradation of Oncogenic FLT3: A Novel Approach to Therapy of Leukemia. Blood, 2016, 128, 524-524.	0.6	0
34	Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells. BMC Cancer, 2015, 15, 803.	1.1	27
35	Identification of novel therapeutic targets in acute leukemias with NRAS mutations using a pharmacologic approach. Blood, 2015, 125, 3133-3143.	0.6	23
36	Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097. Molecular Cancer Therapeutics, 2015, 14, 2249-2259.	1.9	53

#	Article	IF	CITATIONS
37	Identification of ILK as a novel therapeutic target for acute and chronic myeloid leukemia. Leukemia Research, 2015, 39, 1299-1308.	0.4	15
38	Identification of Wee1 as a novel therapeutic target for mutant RAS-driven acute leukemia and other malignancies. Leukemia, 2015, 29, 27-37.	3.3	51
39	Integrin-Linked Kinase a Novel Therapeutic Target for Acute and Chronic Myeloid Leukemia. Blood, 2015, 126, 3694-3694.	0.6	0
40	Upregulation of IGF1R by Mutant <i>RAS</i> in Leukemia and Potentiation of <i>RAS</i> Signaling Inhibitors by Small-Molecule Inhibition of IGF1R. Clinical Cancer Research, 2014, 20, 5483-5495.	3.2	16
41	Comparing nilotinib with dasatinib as second-line therapies in patients with chronic myelogenous leukemia resistant or intolerant to imatinib – a retrospective chart review analysis. Current Medical Research and Opinion, 2013, 29, 623-631.	0.9	14
42	Small Molecule Activators Of AMPK Block The Glycogen Production Required For Transformation Of Myeloid Leukemia Cells. Blood, 2013, 122, 1479-1479.	0.6	2
43	Aberrant Splicing In Patients With AML Is Associated With Over- Expression Of Specific Splicing Factors. Blood, 2013, 122, 3749-3749.	0.6	3
44	Genome-Wide Aberrant Splicing in Patients with Acute Myelold Leukemia (AML) Is Associated with Altered Expression of Splicing Factors. Blood, 2012, 120, 652-652.	0.6	0
45	Deciphering the Critical Pathways of Mutant N-RAS in AML Using Small Molecule Inhibitors Blood, 2012, 120, 2455-2455.	0.6	0
46	Comparison of Adherence Between Nilotinib and Dasatinib As Second-Line Therapies in Chronic Myeloid Leukemia. Blood, 2011, 118, 2754-2754.	0.6	1
47	Genome-Wide Aberrant Splicing in Patients with Acute Myeloid Leukemia (AML) Indetifies Potential Novel Targets. Blood, 2011, 118, 761-761.	0.6	0
48	Activation of Notch1 Signaling Suppresses Granulocytic Differentiation and Maintains a Part of Myeloid Progenitor Cells At the Immature Stage. Blood, 2011, 118, 2375-2375.	0.6	0
49	Potentiation of the Effects of Nilotinib by Combination with Plerixafor in a Mouse Model of BCR-ABL-Positive Residual Disease. Blood, 2011, 118, 2737-2737.	0.6	0
50	Identification of Novel Splice Variants of Multiple Genes Using Genome-Wide Analysis of Alternative Splicing in Patients with Acute Myeloid Leukemia Blood, 2009, 114, 1278-1278.	0.6	2
51	Non-Adherence to Imatinib in Chronic Myeloid Leukemia Patients Is Associated with a Short Term and Long Term Negative Impact On Healthcare Utilization and Costs Blood, 2009, 114, 4270-4270.	0.6	4
52	Microenvironment-Dependent Synthetic Lethality: Implications for Tumor Pathophysiology and Anti-Cancer Drug Discovery Blood, 2009, 114, 1722-1722.	0.6	0
53	NADPH Oxidases Are Important Regulators of Growth and Migration in Myeloid Neoplasms Blood, 2009, 114, 2190-2190.	0.6	0
54	Comparison of Healthcare Utilization and Costs Between Nilotinib and Dasatinib as Second Line Therapies in Chronic Myeloid Leukemia Blood, 2009, 114, 4286-4286.	0.6	1

#	Article	IF	CITATIONS
55	The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood, 2008, 111, 3751-3759.	0.6	122
56	Novel Transforming Mutations of CBL in Human Acute Myeloid Leukemia. Blood, 2008, 112, 2948-2948.	0.6	2
57	SB1518: A Potent and Orally Active JAK2 Inhibitor for the Treatment of Myeloproliferative Disorders Blood, 2007, 110, 538-538.	0.6	8
58	BCR-ABL Induces Error-Prone Single Strand Annealing in Transformed Cells Blood, 2007, 110, 2937-2937.	0.6	0
59	High-Throughput Sequence Analysis of the Tyrosine Kinome in Acute Myeloid Leukemia Blood, 2007, 110, 886-886.	0.6	3
60	The Jak2 V617F Oncogene Associated with Polycythemia Vera Requires a Functional FERM Domain for Transformation and for Expression of the Myc and Pim Proto-Oncogenes Blood, 2006, 108, 3611-3611.	0.6	2
61	The MAML1 Transcriptional Co-Activator Is Required for the Development of Marginal Zone B Cells Blood, 2006, 108, 777-777.	0.6	0
62	NOTCH1-Induced T-Cell Leukemia in Transgenic Zebrafish Blood, 2006, 108, 1825-1825.	0.6	0
63	Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell, 2005, 7, 387-397.	7.7	2,695
64	Identification of Bcr/Abl Point Mutations Conferring Resistance to the Abl Kinase Inhibitor AMN107 by a Random Mutagenesis Study Blood, 2005, 106, 494-494.	0.6	46
65	Simultaneous Administration of AMN107 and Imatinib in the Treatment of Imatinib-Sensitive and Imatinib-Resistant Chronic Myeloid Leukemia Blood, 2005, 106, 694-694.	0.6	7
66	FOXO Transcription Factors Are Negatively Regulated by p38 Map Kinases Downstream of FLT3 Receptor Signaling Blood, 2005, 106, 203-203.	0.6	1
67	The Jak2V617F Oncogene Associated with Polycythemia Vera Regulates G1/S-Phase Transition Blood, 2005, 106, 3510-3510.	0.6	0
68	Effects of Adaphostin, a Novel Tyrphostin Inhibitor, in Diverse Models of Imatinib Mesylate Resistance Blood, 2004, 104, 2097-2097.	0.6	2
69	AMD107: Efficacy as a Selective Inhibitor of the Tyrosine Kinase Activity of BCR-ABL in Murine Leukemia Models Blood, 2004, 104, 551-551.	0.6	2
70	Pim Kinases Mediate Viability Signals Downstream of the Tyrosine Kinase Oncogenes BCR-ABL and FLT3-ITD Blood, 2004, 104, 557-557.	0.6	0
71	A New Model to Evaluate Signaling of Raf in Hematopoietic Cells Blood, 2004, 104, 1533-1533.	0.6	0
72	ARG tyrosine kinase activity is inhibited by STI571. Blood, 2001, 97, 2440-2448.	0.6	246

#	Article	IF	CITATIONS
73	Mechanisms of Transformation by the BCR/ABL Oncogene. International Journal of Hematology, 2001, 73, 278-291.	0.7	63
74	STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene, 2001, 20, 5054-5058.	2.6	643
75	Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene, 2000, 19, 3521-3528.	2.6	226
76	Signaling Domains of the betac Chain of the GM-CSF/IL-3/IL-5 Receptor. Annals of the New York Academy of Sciences, 1999, 872, 305-313.	1.8	33
77	The phosphatidylinositol polyphosphate 5-phosphatase SHIP and the protein tyrosine phosphatase SHP-2 form a complex in hematopoietic cells which can be regulated by BCR/ABL and growth factors. Oncogene, 1997, 15, 2379-2384.	2.6	73
78	Autologous peripheral stem cell transplantation of the blastic phase of chronic myeloid leukemia following sequential high-dose cytosine arabinoside and melphalan. American Journal of Hematology, 1994, 45, 283-287.	2.0	14
79	Hematologic remission and cytogenetic improvement after treatment of stable-phase chronic myelogenous leukemia with continuous infusion of low-dose cytarabine. American Journal of Hematology, 1993, 43, 95-102.	2.0	32
80	Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either G1/S or G2/M depending on dose. Journal of Cellular Physiology, 1992, 150, 484-492.	2.0	94
81	Regulation of colony-stimulating factor production by normal and leukemic human cells. Immunologic Research, 1989, 8, 202-214.	1.3	0
82	Effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSFrh) on transmembrane electrical potentials in granulocytes: Relationship between enhancement of ligand-mediated depolarization and augmentation of superoxide anion (O?2) production. Journal of Cellular Physiology, 1989, 139, 361-369.	2.0	10
83	Clonogenic cells in acute myeloblasts leukaemia. Scandinavian Journal of Haematology, 1985, 35, 251-256.	0.0	10
84	Expression of MY7 antigen on myeloid precursor cells. International Journal of Cell Cloning, 1983, 1, 33-48.	1.6	77
85	Eye toxicity of cancer chemotherapy: A review of the literature. Cancer, 1981, 48, 1539-1549.	2.0	79