Georgi K Marinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8053685/publications.pdf

Version: 2024-02-01

64 papers

29,681 citations

34 h-index 62 g-index

78 all docs 78 docs citations

78 times ranked 50386 citing authors

#	Article	IF	CITATIONS
1	Single-Molecule Multikilobase-Scale Profiling of Chromatin Using m6A-SMAC-Seq and m6A-CpG-GpC-SMAC-Seq. Methods in Molecular Biology, 2022, 2458, 269-298.	0.9	1
2	The chromatin organization of a chlorarachniophyte nucleomorph genome. Genome Biology, 2022, 23, 65.	8.8	4
3	The demographic and geographic impact of the COVID pandemic in Bulgaria and Eastern Europe in 2020. Scientific Reports, 2022, 12, 6333.	3.3	15
4	Transcription-dependent domain-scale three-dimensional genome organization in the dinoflagellate Breviolum minutum. Nature Genetics, 2021, 53, 613-617.	21.4	38
5	Identification and characterization of a novel Epstein-Barr Virus-encoded circular RNA from LMP-2 Gene. Scientific Reports, 2021, 11, 14392.	3.3	10
6	An optimized ATAC-seq protocol for genome-wide mapping of active regulatory elements in primary mouse cortical neurons. STAR Protocols, 2021, 2, 100854.	1.2	3
7	Chromatin accessibility profiling methods. Nature Reviews Methods Primers, 2021, 1, .	21.2	95
8	Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq. Methods in Molecular Biology, 2021, 2243, 183-226.	0.9	13
9	G ₁ cyclin–Cdk promotes cell cycle entry through localized phosphorylation of RNA polymerase II. Science, 2021, 374, 347-351.	12.6	36
10	Transcriptional and chromatin-based partitioning mechanisms uncouple protein scaling from cell size. Molecular Cell, 2021, 81, 4861-4875.e7.	9.7	42
11	The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature, 2020, 583, 760-767.	27.8	131
12	High-Throughput Discovery and Characterization of Human Transcriptional Effectors. Cell, 2020, 183, 2020-2035.e16.	28.9	71
13	In Humans, Sex is Binary and Immutable. Academic Questions, 2020, 33, 279-288.	0.0	5
14	Long-range single-molecule mapping of chromatin accessibility in eukaryotes. Nature Methods, 2020, 17, 319-327.	19.0	93
15	Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nature Communications, 2019, 10, 4063.	12.8	104
16	Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays. PLoS ONE, 2019, 14, e0218073.	2.5	61
17	Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection. Genome Biology and Evolution, 2019, 11, 1398-1416.	2.5	22
18	ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Briefings in Functional Genomics, 2018, 17, 116-137.	2.7	5

#	Article	IF	CITATIONS
19	A decade of ChIP-seq. Briefings in Functional Genomics, 2018, 17, 77-79.	2.7	8
20	Response to Martin and colleagues: mitochondria do not boost the bioenergetic capacity of eukaryotic cells. Biology Direct, 2018, 13, 26.	4.6	4
21	Population Genomics of Paramecium Species. Molecular Biology and Evolution, 2017, 34, 1194-1216.	8.9	35
22	<i>SLC7A11</i> Overexpression in Glioblastoma Is Associated with Increased Cancer Stem Cell-Like Properties. Stem Cells and Development, 2017, 26, 1236-1246.	2.1	66
23	ChIP-seq for the Identification of Functional Elements in the Human Genome. Methods in Molecular Biology, 2017, 1543, 3-18.	0.9	9
24	Identification of Candidate Functional Elements in the Genome from ChIP-seq Data. Methods in Molecular Biology, 2017, 1543, 19-43.	0.9	2
25	On the design and prospects of direct RNA sequencing. Briefings in Functional Genomics, 2017, 16, 326-335.	2.7	18
26	Transcriptomic analysis of the role of RasGEF1B circular RNA in the TLR4/LPS pathway. Scientific Reports, 2017, 7, 12227.	3.3	34
27	An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications, 2017, 8, 851.	12.8	191
28	Membranes, energetics, and evolution across the prokaryote-eukaryote divide. ELife, 2017, 6, .	6.0	60
29	Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in <i>Drosophila</i> . Genes and Development, 2016, 30, 840-855.	5.9	71
30	Increased Expression of System xcân in Glioblastoma Confers an Altered Metabolic State and Temozolomide Resistance. Molecular Cancer Research, 2016, 14, 1229-1242.	3.4	85
31	Diversity and Divergence of Dinoflagellate Histone Proteins. G3: Genes, Genomes, Genetics, 2016, 6, 397-422.	1.8	38
32	Conservation and divergence of the histone code in nucleomorphs. Biology Direct, 2016, 11, 18.	4.6	12
33	Draft Whole-Genome Sequence of Haemophilus ducreyi Strain AUSPNG1, Isolated from a Cutaneous Ulcer of a Child from Papua New Guinea. Genome Announcements, 2016, 4, .	0.8	8
34	Reply to Lane and Martin: Mitochondria do not boost the bioenergetic capacity of eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E667-8.	7.1	20
35	Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biology, 2016, 13, 861-871.	3.1	123
36	A deeper confusion. Evolution: Education and Outreach, 2015, 8, .	0.8	0

#	Article	lF	CITATIONS
37	Single-Cell Transcriptome Analysis Reveals Dynamic Changes in IncRNA Expression during Reprogramming. Cell Stem Cell, 2015, 16, 88-101.	11.1	146
38	The MicroRNA-132 and MicroRNA-212 Cluster Regulates Hematopoietic Stem Cell Maintenance and Survival with Age by Buffering FOXO3 Expression. Immunity, 2015, 42, 1021-1032.	14.3	84
39	The elephant in the room. EMBO Reports, 2015, 16, 399-403.	4.5	0
40	Pitfalls of Mapping High-Throughput Sequencing Data to Repetitive Sequences: Piwi's Genomic Targets Still Not Identified. Developmental Cell, 2015, 32, 765-771.	7.0	26
41	The bioenergetic costs of a gene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15690-15695.	7.1	405
42	MIWI2 and MILI Have Differential Effects on piRNA Biogenesis and DNA Methylation. Cell Reports, 2015, 12, 1234-1243.	6.4	98
43	Genome Sequence of Magnetospirillum magnetotacticum Strain MS-1. Genome Announcements, 2015, 3,	0.8	14
44	The microRNA-212/132 cluster regulates B cell development by targeting Sox4. Journal of Experimental Medicine, 2015, 212, 1679-1692.	8.5	72
45	Evidence for Site-Specific Occupancy of the Mitochondrial Genome by Nuclear Transcription Factors. PLoS ONE, 2014, 9, e84713.	2.5	38
46	Defining functional DNA elements in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6131-6138.	7.1	635
47	A Transgenerational Process Defines piRNA Biogenesis in Drosophila virilis. Cell Reports, 2014, 8, 1617-1623.	6.4	49
48	Large-Scale Quality Analysis of Published ChIP-seq Data. G3: Genes, Genomes, Genetics, 2014, 4, 209-223.	1.8	125
49	From single-cell to cell-pool transcriptomes: Stochasticity in gene expression and RNA splicing. Genome Research, 2014, 24, 496-510.	5.5	470
50	A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.	27.8	1,444
51	Reply to Brunet and Doolittle: Both selected effect and causal role elements can influence human biology and disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3366.	7.1	25
52	Transgenerationally inherited piRNAs trigger piRNA biogenesis by changing the chromatin of piRNA clusters and inducing precursor processing. Genes and Development, 2014, 28, 1667-1680.	5.9	204
53	Fully automated high-throughput chromatin immunoprecipitation for ChIP-seq: Identifying ChIP-quality p300 monoclonal antibodies. Scientific Reports, 2014, 4, 5152.	3.3	34
54	Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes and Development, 2013, 27, 390-399.	5.9	429

#	Article	IF	CITATIONS
55	Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps. Genome Research, 2013, 23, 2136-2148.	5.5	51
56	Antitumor activity of a pyrrole-imidazole polyamide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1863-1868.	7.1	111
57	Genome-Wide Analysis Reveals Coating of the Mitochondrial Genome by TFAM. PLoS ONE, 2013, 8, e74513.	2.5	57
58	Gene expression changes in a tumor xenograft by a pyrrole-imidazole polyamide. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16041-16045.	7.1	42
59	An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biology, 2012, 13, 418.	9.6	410
60	An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489, 57-74.	27.8	15,516
61	ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 2012, 22, 1813-1831.	5. 5	1,708
62	Landscape of transcription in human cells. Nature, 2012, 489, 101-108.	27.8	4,484
63	Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Research, 2012, 22, 860-869.	5.5	150
64	A User's Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biology, 2011, 9, e1001046.	5.6	1,257