Thomas R Cundari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8053648/publications.pdf Version: 2024-02-01

THOMAS P CUNDARL

#	Article	IF	CITATIONS
1	Effective core potential methods for the lanthanides. Journal of Chemical Physics, 1993, 98, 5555-5565.	3.0	1,155
2	Copper–Nitrene Complexes in Catalytic CH Amination. Angewandte Chemie - International Edition, 2008, 47, 9961-9964.	13.8	325
3	Metal Effect on the Supramolecular Structure, Photophysics, and Acidâ^Base Character of Trinuclear Pyrazolato Coinage Metal Complexesâ€. Inorganic Chemistry, 2005, 44, 8200-8210.	4.0	274
4	Variational Transition State Theory with Multidimensional Tunneling. Reviews in Computational Chemistry, 2007, , 125-232.	1.5	273
5	Applications of Support Vector Machines in Chemistry. Reviews in Computational Chemistry, 2007, , 291-400.	1.5	261
6	Stepwise Reduction of Dinitrogen Bond Order by a Low-Coordinate Iron Complex. Journal of the American Chemical Society, 2001, 123, 9222-9223.	13.7	227
7	The Reactivity Patterns of Low-Coordinate Ironâ^'Hydride Complexes. Journal of the American Chemical Society, 2008, 130, 6624-6638.	13.7	179
8	Computational Studies of Transition Metalâ^'Main Group Multiple Bonding. Chemical Reviews, 2000, 100, 807-818.	47.7	156
9	Catalytic Cï٤¿H Amination with Unactivated Amines through Copper(II) Amides. Angewandte Chemie - International Edition, 2010, 49, 8850-8855.	13.8	155
10	Coordination-Number Dependence of Reactivity in an Imidoiron(III) Complex. Angewandte Chemie - International Edition, 2006, 45, 6868-6871.	13.8	143
11	Selectivity and Mechanism of Hydrogen Atom Transfer by an Isolable Imidoiron(III) Complex. Journal of the American Chemical Society, 2011, 133, 9796-9811.	13.7	128
12	Reversible Beta-Hydrogen Elimination of Three-Coordinate Iron(II) Alkyl Complexes:Â Mechanistic and Thermodynamic Studies. Organometallics, 2004, 23, 5226-5239.	2.3	125
13	C–H Functionalization Reactivity of a Nickel–Imide. Journal of the American Chemical Society, 2012, 134, 10114-10121.	13.7	122
14	Ab Initio Quantum Simulation in Solid State Chemistry. Reviews in Computational Chemistry, 2005, , 1-125.	1.5	120
15	A Versatile Tripodal Cu(I) Reagent for C–N Bond Construction via Nitrene-Transfer Chemistry: Catalytic Perspectives and Mechanistic Insights on C–H Aminations/Amidinations and Olefin Aziridinations. Journal of the American Chemical Society, 2014, 136, 11362-11381.	13.7	115
16	Born-Oppenheimer Direct Dynamics Classical Trajectory Simulations. Reviews in Computational Chemistry, 2003, , 79-146.	1.5	108
17	Iron-Catalyzed Homogeneous Hydrogenation of Alkenes under Mild Conditions by a Stepwise, Bifunctional Mechanism. ACS Catalysis, 2016, 6, 2127-2135.	11.2	108
18	Rational Design of Macrometallocyclic Trinuclear Complexes with Superior π-Acidity and π-Basicity. Journal of the American Chemical Society, 2008, 130, 1669-1675.	13.7	107

#	Article	IF	CITATIONS
19	Carbonâ~'Hydrogen Bond Activation by Titanium Imido Complexes. Computational Evidence for the Role of Alkane Adducts in Selective Câ~'H Activation. Journal of the American Chemical Society, 2002, 124, 1481-1487.	13.7	105
20	Molecular Quantum Similarity: Theory and Applications. Reviews in Computational Chemistry, 2005, , 127-207.	1.5	105
21	Calculation of the Electronic Spectra of Large Molecules. Reviews in Computational Chemistry, 2004, , 153-218.	1.5	102
22	Copper(II) Anilides in sp ³ C-H Amination. Journal of the American Chemical Society, 2014, 136, 10930-10940.	13.7	99
23	Inter- and Intramolecular Experimental and Calculated Equilibrium Isotope Effects for (silox)2(tBu3SiND)TiR + RH (silox =tBu3SiO):Â Inferred Kinetic Isotope Effects for RH/D Addition to Transient (silox)2TiNSitBu3. Journal of the American Chemical Society, 2000, 122, 7953-7975.	13.7	98
24	Towards the intrinsic error of the correlation consistent Composite Approach (ccCA). Molecular Physics, 2009, 107, 1107-1121.	1.7	96
25	Accurate thermochemistry for transition metal complexes from first-principles calculations. Journal of Chemical Physics, 2009, 131, 024106.	3.0	95
26	Three-Coordinate Terminal Imidoiron(III) Complexes: Structure, Spectroscopy, and Mechanism of Formation. Inorganic Chemistry, 2010, 49, 6172-6187.	4.0	95
27	Linear-Scaling Methods in Quantum Chemistry. Reviews in Computational Chemistry, 2007, , 1-82.	1.5	94
28	A rhodium catalyst for single-step styrene production from benzene and ethylene. Science, 2015, 348, 421-424.	12.6	94
29	Synthesis and Characterization of the Gold(I) Tris(ethylene) Complex [Au(C ₂ H ₄) ₃][SbF ₆]. Angewandte Chemie - International Edition, 2008, 47, 556-559.	13.8	92
30	Intertrimer and Intratrimer Metallophilic and Excimeric Bonding in the Ground and Phosphorescent States of Trinuclear Coinage Metal Pyrazolates:Â A Computational Study. Journal of Physical Chemistry A, 2006, 110, 5823-5830.	2.5	87
31	Activation of Carbonâ^'Hydrogen Bonds via 1,2-Addition across Mâ^'X (X = OH or NH2) Bonds of d6Transition Metals as a Potential Key Step in Hydrocarbon Functionalization:Â A Computational Study. Journal of the American Chemical Society, 2007, 129, 13172-13182.	13.7	77
32	Activation of carbon–hydrogen bonds and dihydrogen by 1,2-CH-addition across metal–heteroatom bonds. Dalton Transactions, 2013, 42, 16646.	3.3	76
33	Computational Study of Methane Activation by TpRe(CO)2 and CpRe(CO)2 with a Stereoelectronic Comparison of Cyclopentadienyl and Scorpionate Ligands. Organometallics, 2003, 22, 2331-2337.	2.3	71
34	Effective core potential studies of lanthanide complexes. Journal of Chemical Physics, 1995, 103, 7058-7063.	3.0	70
35	The Poisson-Boltzmann Equation. Reviews in Computational Chemistry, 2003, , 147-365.	1.5	69
36	Unusual Electronic Features and Reactivity of the Dipyridylazaallyl Ligand: Characterizations of (smif)2M [M = Fe, Co, Co+, Ni; smif = {(2-py)CH}2N] and [(TMS)2NFe]2(smif)2. Journal of the American Chemical Society, 2009, 131, 3428-3429.	13.7	68

#	Article	IF	CITATIONS
37	Spin Crossover during β-Hydride Elimination in High-Spin Iron(II)– and Cobalt(II)–Alkyl Complexes. Organometallics, 2013, 32, 4741-4751.	2.3	63
38	Copper atalyzed C(sp ³)â^'H Amidation: Sterically Driven Primary and Secondary Câ^'H Site‧electivity. Angewandte Chemie - International Edition, 2019, 58, 3421-3425.	13.8	61
39	Valence Bond Theory, Its History, Fundamentals, and Applications: A Primer. Reviews in Computational Chemistry, 2004, , 1-100.	1.5	58
40	Experimental and Computational Studies of the Ruthenium-Catalyzed Hydrosilylation of Alkynes: Mechanistic Insights into the Regio- and Stereoselective Formation of Vinylsilanes. Organometallics, 2014, 33, 6937-6944.	2.3	58
41	Bonding and Structure of Copper Nitrenes. Inorganic Chemistry, 2008, 47, 10067-10072.	4.0	56
42	Computational Study of Methane Câ^'H Activation by First-Row Late Transition Metal L _{<i>n</i>} Mâ•E (M: Fe, Co, Ni) Complexes. Inorganic Chemistry, 2010, 49, 2038-2046.	4.0	56
43	Ligand Lone-Pair Influence on Hydrocarbon Câ^'H Activation: A Computational Perspective. Organometallics, 2010, 29, 6801-6815.	2.3	53
44	Enantioselective C–H Amination Catalyzed by Nickel Iminyl Complexes Supported by Anionic Bisoxazoline (BOX) Ligands. Journal of the American Chemical Society, 2021, 143, 817-829.	13.7	52
45	C–C Bond Formation and Related Reactions at the CNC Backbone in (smif)FeX (smif =) Tj ETQq1 1 0.784314 r Hydrogenations and Alkyne Trimerization (X = N(TMS)2, dpma = (Di-(2-pyridyl-methyl)-amide)). Inorganic	gBT /Over 4.0	lock 10 Tf 50 51
46	Iridium, Rhodium, and Ruthenium Catalysts for the "Aldehyde–Water Shift―Reaction. ACS Catalysis, 2014, 4, 3034-3038.	11.2	50
47	Robust Fuzzy Principal Component Analysis (FPCA). A Comparative Study Concerning Interaction of Carbonâ^'Hydrogen Bonds with Molybdenumâ^'Oxo Bonds. Journal of Chemical Information and Computer Sciences, 2002, 42, 1363-1369.	2.8	49
48	Olefin Substitution in (silox) ₃ M(olefin) (silox = <i>^t</i> Bu ₃ SiO;) Tj ETQqQ of the American Chemical Society, 2008, 130, 1183-1196.) 0 0 rgBT 13.7	/Overlock 10 48
49	N-Heterocyclic Carbene Based Nickel and Palladium Complexes: A DFT Comparison of the Mizoroki–Heck Catalytic Cycles. Organometallics, 2016, 35, 3170-3181.	2.3	48
50	Conical Intersections in Molecular Systems. Reviews in Computational Chemistry, 2007, , 83-124.	1.5	47
51	Effective Core Potential Approaches to the Chemistry of the Heavier Elements. Reviews in Computational Chemistry, 2007, , 145-202.	1.5	46
52	Application of the Correlation Consistent Composite Approach (ccCA) to Third-Row (Gaâ^'Kr) Molecules. Journal of Chemical Theory and Computation, 2008, 4, 328-334.	5.3	46
53	Density functional theory study of palladium-catalyzed aryl-nitrogen and aryl-oxygen bond formation. Journal of Physical Organic Chemistry, 2005, 18, 417-425.	1.9	45
54	Pt ^{II} -Catalyzed Ethylene Hydrophenylation: Influence of Dipyridyl Chelate Ring Size on Catalyst Activity and Longevity. ACS Catalysis, 2013, 3, 1165-1171.	11.2	45

#	Article	IF	CITATIONS
55	Elusive Terminal Copper Arylnitrene Intermediates. Angewandte Chemie - International Edition, 2017, 56, 6426-6430.	13.8	45
56	Methane Activation by Group VB Bis(imido) Complexes. Organometallics, 1994, 13, 2987-2994.	2.3	44
57	CO ₂ -Formatics: How Do Proteins Bind Carbon Dioxide?. Journal of Chemical Information and Modeling, 2009, 49, 2111-2115.	5.4	44
58	Carbon–Oxygen Bond Formation via Organometallic Baeyer–Villiger Transformations: A Computational Study on the Impact of Metal Identity. Journal of the American Chemical Society, 2012, 134, 2332-2339.	13.7	44
59	Oxyfunctionalization with Cp*lr ^{III} (NHC)(Me)(Cl) with O ₂ : Identification of a Rare Bimetallic Ir ^{IV} μ-Oxo Intermediate. Journal of the American Chemical Society, 2015, 137, 3574-3584.	13.7	44
60	Reactivity of Hydrogen on and in Nanostructured Molybdenum Nitride: Crotonaldehyde Hydrogenation. ACS Catalysis, 2016, 6, 5797-5806.	11.2	44
61	PM3(tm) parameterization using genetic algorithms. International Journal of Quantum Chemistry, 2000, 77, 421-432.	2.0	43
62	Methane activation by d0 and d2 imidos: effects of d orbital occupation and comparison of [2 + 2] and oxidative addition. Organometallics, 1993, 12, 4971-4978.	2.3	42
63	Single-Electron Oxidation of Monomeric Copper(I) Alkyl Complexes:  Evidence for Reductive Elimination through Bimolecular Formation of Alkanes. Organometallics, 2006, 25, 4097-4104.	2.3	42
64	Rare Examples of Fe(IV) Alkyl-Imide Migratory Insertions: Impact of Fe—C Covalency in (Me ₂ IPr)Fe(â•NAd)R ₂ (R = ^{neo} Pe, 1-nor). Journal of the American Chemical Society, 2017, 139, 12145-12148.	13.7	42
65	Methane activation by tris(imido) complexes: the effect of metal, ligand and d orbital occupation. Journal of Organometallic Chemistry, 1995, 504, 1-13.	1.8	40
66	Asymmetric Ring-Opening of Donor–Acceptor Cyclopropanes with Primary Arylamines Catalyzed by a Chiral Heterobimetallic Catalyst. ACS Catalysis, 2019, 9, 8285-8293.	11.2	40
67	Iron and Chromium Complexes Containing Tridentate Chelates Based on Nacnac and Imino- and Methyl-Pyridine Components: Triggering C—X Bond Formation. Inorganic Chemistry, 2014, 53, 7467-7484.	4.0	39
68	Redox non-innocence permits catalytic nitrene carbonylation by (dadi)Tiî€NAd (Ad = adamantyl). Chemical Science, 2017, 8, 3410-3418.	7.4	39
69	Development of Computational Models for Enzymes, Transporters, Channels, and Receptors Relevant to ADME/Tox. Reviews in Computational Chemistry, 2004, , 333-415.	1.5	38
70	A Dinitrogen Dicopper(I) Complex via a Mixedâ€Valence Dicopper Hydride. Angewandte Chemie - International Edition, 2016, 55, 9927-9931.	13.8	38
71	Hydrophenylation of ethylene using a cationic Ru(<scp>ii</scp>) catalyst: comparison to a neutral Ru(<scp>ii</scp>) catalyst. Chemical Science, 2014, 5, 4355-4366.	7.4	37
72	Nitrene Insertion into CC and CH Bonds of Diamide Diimine Ligands Ligated to Chromium and Iron. Angewandte Chemie - International Edition, 2015, 54, 14407-14411.	13.8	37

#	Article	IF	CITATIONS
73	Biomolecular Applications of Poisson-Boltzmann Methods. Reviews in Computational Chemistry, 2005, , 349-379.	1.5	36
74	Synthetic Approaches to (smif) ₂ Ti (smif = 1,3-di-(2-pyridyl)-2-azaallyl) Reveal Redox Non-Innocence and C–C Bond-Formation. Inorganic Chemistry, 2012, 51, 8177-8186.	4.0	36
75	Use of [SbF ₆] ^{â^`} to Isolate Cationic Copper and Silver Adducts with More than One Ethylene on the Metal Center. Organometallics, 2013, 32, 3034-3041.	2.3	36
76	Pt ^{II} -Catalyzed Hydrophenylation of α-Olefins: Variation of Linear/Branched Products as a Function of Ligand Donor Ability. ACS Catalysis, 2014, 4, 1607-1615.	11.2	36
77	Mechanistic Studies of Single-Step Styrene Production Using a Rhodium(I) Catalyst. Journal of the American Chemical Society, 2017, 139, 1485-1498.	13.7	36
78	Comparative Nitrene-Transfer Chemistry to Olefinic Substrates Mediated by a Library of Anionic Mn(II) Triphenylamido-Amine Reagents and M(II) Congeners (M = Fe, Co, Ni) Favoring Aromatic over Aliphatic Alkenes. ACS Catalysis, 2018, 8, 9183-9206.	11.2	36
79	Methane adducts of d0 transition metal imido complexes. Organometallics, 1993, 12, 1998-2000.	2.3	34
80	Decomposition Pathways for a Model TiN Chemical Vapor Deposition Precursor. Chemistry of Materials, 1996, 8, 189-196.	6.7	34
81	Enumerating Molecules. Reviews in Computational Chemistry, 2005, , 209-286.	1.5	34
82	The Mechanism of N–N Double Bond Cleavage by an Iron(II) Hydride Complex. Journal of the American Chemical Society, 2016, 138, 12112-12123.	13.7	34
83	Three-Coordinate Copper(II) Aryls: Key Intermediates in C–O Bond Formation. Journal of the American Chemical Society, 2017, 139, 9112-9115.	13.7	34
84	Catalytic Tuning of a Phosphinoethane Ligand for Enhanced Câ^'H Activation. Journal of the American Chemical Society, 2008, 130, 13051-13058.	13.7	33
85	Mechanism of Hydrogenolysis of an Iridium–Methyl Bond: Evidence for a Methane Complex Intermediate. Journal of the American Chemical Society, 2013, 135, 1217-1220.	13.7	33
86	Understanding the Effect of Ancillary Ligands on Concerted Metalation–Deprotonation by (^{dm} Phebox)Ir(OAc) ₂ (H ₂ O) Complexes: A DFT Study. Organometallics, 2014, 33, 6413-6419.	2.3	33
87	Kinetics of Substitution of Weakly Coordinating Nitrate by Chloride in (Î-5-Cp)Ru(CO)(ER3)ONO2(ER3=) Tj ETQq1 2270-2279.	1 0.7843 2.3	314 rgBT /0 32
88	Molecular and Electronic Structure of Cyclic Trinuclear Gold(I) Carbeniate Complexes: Insights for Structure/Luminescence/Conductivity Relationships. Inorganic Chemistry, 2014, 53, 7485-7499.	4.0	32
89	Activation of Carbonâ `Hydrogen and Hydrogenâ `Hydrogen Bonds by Copperâ `Nitrenes: A Comparison of Density Functional Theory with Single- and Multireference Correlation Consistent Composite Approaches. Journal of Chemical Theory and Computation, 2009, 5, 2959-2966.	5.3	31
90	Modified embedded atom method study of the mechanical properties of carbon nanotube reinforced nickel composites. Physical Review B, 2010, 81, .	3.2	31

#	Article	IF	CITATIONS
01	Synthesis and Characterization of (smif) ₂ M ^{<i>n</i>} (<i>n</i> = 0, M = V, Cr, Mn,) Tj ETQ	q110.78	4314 rgBT
91	2011, 50, 12414-12436.	4.0	29
92	Reductive Elimination of Alkylamines from Low-Valent, Alkylpalladium(II) Amido Complexes. Journal of the American Chemical Society, 2012, 134, 15281-15284.	13.7	28
93	Mechanistic Study of Oxy Insertion into Nickel–Carbon Bonds with Nitrous Oxide. Organometallics, 2012, 31, 4998-5004.	2.3	28
94	Structural Analysis of Transition Metal β-X Substituent Interactions. Toward the Use of Soft Computing Methods for Catalyst Modeling. Journal of Chemical Information and Computer Sciences, 2000, 40, 1052-1061.	2.8	27
95	A quantum mechanics/molecular mechanics study of the steric influence of the PR3 spectator ligands on the energetics of ethylene insertion into the Rh–H bond of HRh(PR3)2(CO)(η2-CH2CH2). New Journal of Chemistry, 2002, 26, 129-135.	2.8	27
96	Ruthenium(II)-Mediated Carbonâ^'Carbon Bond Formation between Acetonitrile and Pyrrole:Â Combined Experimental and Computational Study. Organometallics, 2005, 24, 5015-5024.	2.3	27
97	Computational study of methane activation by mercury(II) complexes. Journal of Computational Chemistry, 1998, 19, 902-911.	3.3	26
98	Modeling Nonlinear Optical Properties of Transition Metal Complexes. Basis Set, Effective Core Potential, and Geometry Effects. Journal of Physical Chemistry A, 1998, 102, 2962-2966.	2.5	26
99	Molecular Modeling of Vanadiumâ^'Oxo Complexes. A Comparison of Quantum and Classical Methods. Journal of Physical Chemistry A, 1998, 102, 997-1004.	2.5	26
100	Reductive functionalization of a rhodium(iii)–methyl bond by electronic modification of the supporting ligand. Dalton Transactions, 2014, 43, 8273.	3.3	26
101	DFT and QSAR Studies of Ethylene Polymerization by Zirconocene Catalysts. ACS Catalysis, 2019, 9, 9339-9349.	11.2	25
102	Well-Defined Copper(I) Amido Complex and Aryl Iodides Reacting to Form Aryl Amines. Organometallics, 2011, 30, 55-57.	2.3	24
103	Zinc(II)-Mediated Carbene Insertion into C–H Bonds in Alkanes. Inorganic Chemistry, 2015, 54, 11043-11045.	4.0	24
104	Conversions of Ruthenium(III) Alkyl Complexes to Ruthenium(II) through Ruâ^'Calkyl Bond Homolysis. Organometallics, 2005, 24, 1301-1305.	2.3	23
105	C–H Activation by Multiply Bonded Complexes with Potentially Noninnocent Ligands: A Computational Study. Inorganic Chemistry, 2013, 52, 8106-8113.	4.0	23
106	An Uncanny Dehydrogenation Mechanism: Polar Bond Control over Stepwise or Concerted Transition States. Inorganic Chemistry, 2017, 56, 5519-5524.	4.0	23
107	Intramolecular C–H Functionalization Followed by a [2 _σ + 2 _π] Addition via an Intermediate Nickel–Nitridyl Complex. Inorganic Chemistry, 2019, 58, 7131-7135.	4.0	23
108	Olefin Insertion and Subsequent β-X Elimination from a Pentacoordinate Tantalum Complex. A Density Functional Theory Study. Organometallics, 2003, 22, 4047-4059.	2.3	22

#	Article	IF	CITATIONS
109	C–H Bond Activation of Methane by Pt ^{II} –N-Heterocyclic Carbene Complexes. The Importance of Having the Ligands in the Right Place at the Right Time. Organometallics, 2012, 31, 1042-1048.	2.3	22
110	Transition Metal Mediated C–H Activation and Functionalization: The Role of Poly(pyrazolyl)borate and Poly(pyrazolyl)alkane Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 2296-2311.	2.0	22
111	Heterobimetallic Silver–Iron Complexes Involving Fe(CO)5 Ligands. Journal of the American Chemical Society, 2017, 139, 14292-14301.	13.7	22
112	Synthesis, Photophysical Properties, and Computational Analysis of Di- and Tetranuclear Alkyne Complexes of Copper(I) Supported by a Highly Fluorinated Pyrazolate. Organometallics, 2018, 37, 4105-4118.	2.3	22
113	Reductive Elimination from Phosphine-Ligated Alkylpalladium(II) Amido Complexes To Form sp ³ Carbon–Nitrogen Bonds. Journal of the American Chemical Society, 2018, 140, 4893-4904.	13.7	21
114	Elimination and Activation of Methane and Larger Hydrocarbons. The Journal of Physical Chemistry, 1996, 100, 6475-6483.	2.9	20
115	Variable Selection-Spoilt for Choice?. Reviews in Computational Chemistry, 2005, , 287-348.	1.5	20
116	The Simulation of Ionic Charge Transport in Biological Ion Channels: An Introduction to Numerical Methods. Reviews in Computational Chemistry, 2006, , 229-293.	1.5	20
117	Coinage Metalâ^'Ethylene Complexes Supported by Tris(pyrazolyl)borates: A Computational Study. Organometallics, 2009, 28, 1826-1831.	2.3	20
118	Complete methane-to-methanol catalytic cycle: A DFT study of oxygen atom transfer from N2O to late-row (MNi, Cu, Zn) β-diketiminate CH activation catalysts. Polyhedron, 2013, 52, 945-956.	2.2	20
119	Iron Complexes Derived from {nacnac-(CH2py)2}â^' and {nacnac-(CH2py)(CHpy)}n Ligands: Stabilization of Iron(II) via Redox Noninnocence. Inorganic Chemistry, 2014, 53, 4459-4474.	4.0	20
120	Computational Mechanistic Study of Electro-Oxidation of Ammonia to N ₂ by Homogenous Ruthenium and Iron Complexes. Journal of Physical Chemistry A, 2019, 123, 7973-7982.	2.5	20
121	Fuzzy Soft-Computing Methods and Their Applications in Chemistry. Reviews in Computational Chemistry, 2004, , 249-331.	1.5	19
122	Comparative Protein Modeling. Reviews in Computational Chemistry, 2006, , 57-167.	1.5	19
123	Computational study of carbon–hydrogen bond deprotonation by alkali metal superbases. Computational and Theoretical Chemistry, 2013, 1019, 85-93.	2.5	19
124	DFT Modeling of the Aldehyde–Water Shift Reaction with a Cationic Cp*Ir Catalyst. ACS Catalysis, 2015, 5, 225-232.	11.2	19
125	Computational Study of Methane C–H Activation by Diiminopyridine Nitride/Nitridyl Complexes of 3d Transition Metals and Main-Group Elements. Inorganic Chemistry, 2018, 57, 6807-6815.	4.0	19
126	Formal oxo- and aza-[3 + 2] reactions of α-enaminones and quinones: a double divergent process and the roles of chiral phosphoric acid and molecular sieves. Chemical Science, 2020, 11, 9386-9394.	7.4	19

#	Article	IF	CITATIONS
127	Theoretical Estimation of Vibrational Frequencies Involving Transition Metal Compounds. Journal of Physical Chemistry A, 1997, 101, 5783-5788.	2.5	18
128	Novel transition metal multiple bonding—myth or reality?. Inorganica Chimica Acta, 2003, 345, 70-80.	2.4	18
129	Computational study of methane functionalization by a multiply bonded, Ni-bis(phosphine) complex. Journal of Organometallic Chemistry, 2007, 692, 4551-4559.	1.8	18
130	A Computational Study of Metal-Mediated Decomposition of Nitrene Transfer Reagents. Journal of Organic Chemistry, 2009, 74, 5711-5714.	3.2	18
131	First-Row Transition Metal and Lithium Pyridine-ene-amide Complexes Exhibiting N- and C-Isomers and Ligand-Based Activation of Benzylic C–H Bonds. Organometallics, 2015, 34, 4656-4668.	2.3	18
132	Solvent-Dependent Thermochemistry of an Iridium/Ruthenium H ₂ Evolution Catalyst. Inorganic Chemistry, 2016, 55, 12042-12051.	4.0	18
133	Control of C–H Bond Activation by Mo-Oxo Complexes: p <i>K</i> _a or Bond Dissociation Free Energy (BDFE)?. Inorganic Chemistry, 2017, 56, 12319-12327.	4.0	18
134	Computational Assessment of Counterion Effect of Borate Anions on Ethylene Polymerization by Zirconocene and Hafnocene Catalysts. Organometallics, 2020, 39, 2068-2079.	2.3	18
135	Selective Extraction of N ₂ from Air by Diarylimine Iron Complexes. Journal of the American Chemical Society, 2013, 135, 3511-3527.	13.7	17
136	Methane C–H Activation via 3d Metal Methoxide Complexes with Potentially Redox-Noninnocent Pincer Ligands: A Density Functional Theory Study. Inorganic Chemistry, 2017, 56, 12282-12290.	4.0	17
137	Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water. Journal of Physical Chemistry B, 2016, 120, 12911-12919.	2.6	16
138	Molecular Modeling of Vanadium Peroxides. Inorganic Chemistry, 1997, 36, 4029-4034.	4.0	15
139	Electronic and Charge-Transport Properties of the Au ₃ (CH ₃ Nâ•COCH ₃) ₃ Crystal: A Density Functional Theory Study. Journal of Physical Chemistry Letters, 2013, 4, 2186-2189.	4.6	15
140	Theoretical Study of Reductive Functionalization of Methyl Ligands of Group 9 Complexes Supported by Two Bipyridyl Ligands: A Key Step in Catalytic Hydrocarbon Functionalization. Organometallics, 2014, 33, 1936-1944.	2.3	15
141	Oxidative Hydrophenylation of Ethylene Using a Cationic Ru(II) Catalyst: Styrene Production with Ethylene as the Oxidant. Israel Journal of Chemistry, 2017, 57, 1037-1046.	2.3	15
142	Dispersion forces play a role in (Me ₂ IPr)Fe(î€NAd)R ₂ (Ad = adamantyl; R =) Tj ETQqO O Transactions, 2018, 47, 6025-6030.	0 rgBT /0 3.3	verlock 10 Tf 15
143	Copperâ€Catalyzed C(sp ³)â^'H Amidation: Sterically Driven Primary and Secondary Câ^'H Siteâ€Selectivity. Angewandte Chemie, 2019, 131, 3459-3463.	2.0	15
144	A Pd ^{III} Sulfate Dimer Initiates Rapid Methane Monofunctionalization by H Atom	11.2	15

⁺ Abstraction. ACS Catalysis, 2020, 10, 14782-14792.

#	Article	IF	CITATIONS
145	Protein Structure Classification. Reviews in Computational Chemistry, 2006, , 1-55.	1.5	14
146	Analysis of Chemical Information Content Using Shannon Entropy. Reviews in Computational Chemistry, 2007, , 263-289.	1.5	14
147	Experimental and Computational Investigation of the Aerobic Oxidation of a Late Transition Metal-Hydride. Journal of the American Chemical Society, 2019, 141, 10830-10843.	13.7	14
148	Electrocatalytic Reduction of Nitrogen to Ammonia: the Roles of Lattice O and N in Reduction at Vanadium Oxynitride Surfaces. ACS Applied Materials & Interfaces, 2022, 14, 531-542.	8.0	14
149	A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase. Journal of Molecular Modeling, 2007, 13, 685-690.	1.8	13
150	Cooperative Carbon Capture Capabilities in Multivariate MOFs Decorated with Amino Acid Side Chains: A Computational Study. Journal of Physical Chemistry C, 2013, 117, 14717-14722.	3.1	13
151	Oxygen Atom Insertion into Iron(II) Phenyl and Methyl Bonds: A Key Step for Catalytic Hydrocarbon Functionalization. Organometallics, 2014, 33, 5597-5605.	2.3	13
152	Theoretical Study of Two Possible Side Reactions for Reductive Functionalization of 3d Metal–Methyl Complexes by Hydroxide Ion: Deprotonation and Metal–Methyl Bond Dissociation. Organometallics, 2016, 35, 950-958.	2.3	13
153	Complexes of [(dadi)Ti(L/X)] ^{<i>m</i>} That Reveal Redox Non-Innocence and a Stepwise Carbene Insertion into a Carbon–Carbon Bond. Organometallics, 2018, 37, 3488-3501.	2.3	13
154	How Computational Chemistry Became Important in the Pharmaceutical Industry. Reviews in Computational Chemistry, 2007, , 401-451.	1.5	12
155	Periodic and Molecular Modeling Study of Donorâ^'Acceptor Interactions in (dbbpy)Pt(tdt)·TENF and [Pt(dbbpy)(tdt)] ₂ A·TENF. Organometallics, 2010, 29, 795-800.	2.3	12
156	Impact of d-Orbital Occupation on Metal–Carbon Bond Functionalization. Inorganic Chemistry, 2014, 53, 7789-7798.	4.0	12
157	Heterolytic H–H and H–B Bond Cleavage Reactions of {(IPr)Ni(μ-S)} ₂ . Inorganic Chemistry, 2017, 56, 9922-9930.	4.0	12
158	Reductive Elimination to Form C(sp ³)–N Bonds from Palladium(II) Primary Alkyl Complexes. Organometallics, 2018, 37, 3243-3247.	2.3	12
159	C–H Activation of Methane by Nickel–Methoxide Complexes: A Density Functional Theory Study. Organometallics, 2018, 37, 3111-3121.	2.3	12
160	Au ₃ -to-Ag ₃ coordinate-covalent bonding and other supramolecular interactions with covalent bonding strength. Chemical Science, 2020, 11, 11179-11188.	7.4	12
161	Reduced Variational Space Analysis of Methane Adducts. Inorganic Chemistry, 1998, 37, 5399-5401.	4.0	11
162	Elusive Terminal Copper Arylnitrene Intermediates. Angewandte Chemie, 2017, 129, 6526-6530.	2.0	11

#	Article	IF	CITATIONS
163	Direct Anti-Markovnikov Addition of Water to Olefin To Synthesize Primary Alcohols: A Theoretical Study. Journal of Physical Chemistry A, 2019, 123, 958-965.	2.5	11
164	Computational Study of 3d Metals and Their Influence on the Acidity of Methane C–H Bonds. ACS Omega, 2019, 4, 20159-20163.	3.5	11
165	A Comparison of Neural Networks versus Quantum Mechanics for Inorganic Systems. Journal of Chemical Information and Computer Sciences, 1997, 37, 871-875.	2.8	10
166	Wavelets in Chemistry and Cheminformatics. Reviews in Computational Chemistry, 2006, , 295-329.	1.5	10
167	A Dinitrogen Dicopper(I) Complex via a Mixedâ€Valence Dicopper Hydride. Angewandte Chemie, 2016, 128, 10081-10085.	2.0	10
168	Density Functional Study of Methane Activation by Frustrated Lewis Pairs with Group 13 Trihalides and Group 15 Pentahalides and a Machine Learning Analysis of Their Barrier Heights. Journal of Chemical Information and Modeling, 2020, 60, 4958-4966.	5.4	10
169	Communication—Electrochemical Reduction of N ₂ to Ammonia by Vanadium Oxide Thin Films at Neutral pH: Oxophilicity and the NRR Reaction. Journal of the Electrochemical Society, 2021, 168, 026504.	2.9	10
170	Modeling Lanthanide Coordination Complexes. Comparison of Semiempirical and Classical Methods. Journal of Chemical Information and Computer Sciences, 1998, 38, 523-528.	2.8	9
171	Computational Techniques and Strategies for Monte Carlo Thermodynamic Calculations, with Applications to Nanoclusters. Reviews in Computational Chemistry, 2003, , 1-41.	1.5	9
172	<i>De novo</i> prediction of the ground state structure of transition metal complexes using semiempirical and <i>ab initio</i> quantum mechanics. Coordination isomerism. Journal of Coordination Chemistry, 2005, 58, 575-585.	2.2	9
173	Carbon Dioxide Migration Pathways in Proteins. Journal of Physical Chemistry Letters, 2012, 3, 830-833.	4.6	9
174	Pt ^{II} and Rh ^{III} Hydrocarbyl Complexes Bearing Coordinated Oxygen Atom Delivery Reagents. European Journal of Inorganic Chemistry, 2013, 2013, 4515-4525.	2.0	9
175	Methane Is the Best Substrate for C(sp ³)–H Activation with Cp*(PMe ₃)Co(Me)(OTf): A Density Functional Theory Study. Organometallics, 2015, 34, 4032-4038.	2.3	9
176	DFT study of substituent effects in the hydroxylation of methane and toluene mediated by an ethylbenzene dehydrogenase active site model. Journal of Organometallic Chemistry, 2018, 864, 44-49.	1.8	9
177	H ₂ addition to (^{Me4} PCP)Ir(CO): studies of the isomerization mechanism. Dalton Transactions, 2018, 47, 16119-16125.	3.3	9
178	Computational study of acetylene hydration by bio-inspired group six catalyst models. Polyhedron, 2018, 154, 114-122.	2.2	9
179	Effect of Appended S-Block Metal Ion Crown Ethers on Redox Properties and Catalytic Activity of Mn–Nitride Schiff Base Complexes: Methane Activation. Inorganic Chemistry, 2019, 58, 12254-12263. –	4.0	9
180	Effective core potential study of multiply bonded transition metal complexes of the heavier main group elements. International Journal of Quantum Chemistry, 1994, 52, 181-194.	2.0	8

#	Article	IF	CITATIONS
181	Molecular Modeling of Catalysts and Catalytic Reactions. Journal of Chemical Information and Computer Sciences, 1998, 38, 941-948.	2.8	8
182	Modeling of Spin-Forbidden Reactions. Reviews in Computational Chemistry, 2004, , 101-152.	1.5	8
183	Coarse-Grain Modeling of Polymers. Reviews in Computational Chemistry, 2007, , 233-262.	1.5	8
184	Modeling the Deposition of Metal Atoms on a p-Type Organometallic Conductor: Implications for Stability and Electron Transfer. Journal of Physical Chemistry C, 2011, 115, 5997-6003.	3.1	8
185	Methane C–H Bond Activation by "Naked―Alkali Metal Imidyl and Alkaline Earth Metal Imide Complexes. The Role of Ligand Spin and Nucleophilicity. Journal of Physical Chemistry A, 2013, 117, 9245-9251.	2.5	8
186	Disparate reactivity from isomeric {Me 2 C(CH 2 N CHpy) 2 } and {Me 2 C(CH NCH 2 py) 2 } chelates in iron complexation. Polyhedron, 2014, 84, 182-191.	2.2	8
187	Reductive functionalization of 3d metal–methyl complexes: The greater importance of ligand than metal. Computational and Theoretical Chemistry, 2015, 1069, 86-95.	2.5	8
188	Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics, 2021, 40, 1974-1996.	2.3	8
189	Copper(III) Metallacyclopentadienes via Zirconocene Transfer and Reductive Elimination to an Isolable Phenanthrocyclobutadiene. Journal of the American Chemical Society, 2022, 144, 9853-9858.	13.7	8
190	Late transition-metal multiple bonding: Platinum phosphinidenes and ruthenium alkylidenes. International Journal of Quantum Chemistry, 1997, 65, 987-996.	2.0	7
191	Carbonhydrogen versus carbonheteroatom activation by a high-valent zirconium-imido complex. International Journal of Quantum Chemistry, 2006, 106, 1611-1619.	2.0	7
192	Dinitrogen activation by low-coordinate transition metal complexes. Journal of Coordination Chemistry, 2011, 64, 3123-3135.	2.2	7
193	Chemical bonding involving d-orbitals. Chemical Communications, 2013, 49, 9521.	4.1	7
194	5d Metal(IV) Imide Complexes. The Impact (or Lack Thereof) of d-Orbital Occupation on Methane Activation and Functionalization. Inorganic Chemistry, 2017, 56, 1823-1829.	4.0	7
195	A DFT Survey of the Effects of dâ€Electron Count and Metal Identity on the Activation and Functionalization of Câ [~] 'H Bonds for Mid to Late Transition Metals. Israel Journal of Chemistry, 2017, 57, 1023-1031.	2.3	7
196	Nitrene Insertion into Aromatic and Benzylic Câ^'H Bonds Catalyzed by Copper Complexes of Fluorinated Bis―and Tris(pyrazolyl)borates. ChemCatChem, 2019, 11, 4966-4973.	3.7	7
197	Oxidative Additions to Ti(IV) in [(dadi) ^{4–}]Ti ^{IV} (THF) Involve Carbon–Carbon Bond Formation and Redox-Noninnocent Behavior. Organometallics, 2019, 38, 1502-1515.	2.3	7
198	Genetic Mutations in the S-loop of Human Glutathione Synthetase: Links Between Substrate Binding, Active Site Structure and Allostery. Computational and Structural Biotechnology Journal, 2019, 17, 31-38.	4.1	7

#	Article	IF	CITATIONS
199	Revealing a Decisive Role for Secondary Coordination Sphere Nucleophiles on Methane Activation. Journal of the American Chemical Society, 2020, 142, 3125-3131.	13.7	7
200	The activation and elimination of H2 by Zr complexes. International Journal of Quantum Chemistry, 1992, 44, 793-806.	2.0	6
201	Effective core potential modeling of Group IVA-Group IVB chemical vapor deposition. International Journal of Quantum Chemistry, 1995, 55, 315-328.	2.0	6
202	Reaction pathways for model II-VI precursors: A computational study. International Journal of Quantum Chemistry, 1999, 71, 47-56.	2.0	6
203	Multiple Bonding Involving Late Transition Metals. The Case of a Silverâ dxo Complex. Inorganic Chemistry, 1999, 38, 5611-5615.	4.0	6
204	Copper atalyzed phosphinidene transfer to ethylene, acetylene, and carbon monoxide: A computational study. International Journal of Quantum Chemistry, 2010, 110, 1702-1711.	2.0	6
205	Lewis Bases Trigger Intramolecular CH-Bond Activation: (tBu3SiO)2W=NtBu [rlhar2] (tBu3SiO)(l̂ºO,lºC-tBu2SiOCMe2CH2)HW=NtBu. European Journal of Inorganic Chemistry, 2013, 2013, 4056-4067.	2.0	6
206	Goldâ€Mediated Isomerization of €yclooctyne to Ring Fused Olefinic Bicycles. European Journal of Inorganic Chemistry, 2016, 2016, 995-1001.	2.0	6
207	Computational Analysis of Transition Metal-Terminal Boride Complexes. Journal of Physical Chemistry A, 2017, 121, 9358-9368.	2.5	6
208	Methane Manifesto: A Theorist's Perspective on Catalytic Light Alkane Functionalization. Comments on Inorganic Chemistry, 2017, 37, 219-237.	5.2	6
209	Synthesis, characterization, DFT calculations, and reactivity study of a nitrido-bridged dimeric vanadium(<scp>iv</scp>) complex. Dalton Transactions, 2020, 49, 1200-1206.	3.3	6
210	Unrealized concepts of masked alkylidenes in (PNP)FeXY systems and alternative approaches to LnXmFe(IV)=CHR. Polyhedron, 2020, 181, 114460.	2.2	6
211	Chemical and electronic structures of cobalt oxynitride films deposited by NH ₃ <i>vs.</i> N ₂ plasma: theory <i>vs.</i> experiment. Physical Chemistry Chemical Physics, 2020, 22, 24640-24648.	2.8	6
212	Reversible C–C Bond Formation, Halide Abstraction, and Electromers in Complexes of Iron Containing Redox-Noninnocent Pyridine-imine Ligands. Inorganic Chemistry, 2021, 60, 18662-18673.	4.0	6
213	Substituent effects on methane activation and elimination by high-valent Zr complexes. International Journal of Quantum Chemistry, 1996, 60, 779-788.	2.0	5
214	Rhodocenium Complexes Bearing the 1,2,3-Tri-tert-butylcyclopentadienyl Ligand:Â Redox-Promoted Synthesis and Mechanistic, Structural and Computational Investigations. Organometallics, 1998, 17, 1716-1724.	2.3	5
215	Computational Study of Methane C–H Activation by Earth-Abundant Metal Amide/Aminyl Complexes. Organometallics, 2017, 36, 3987-3994.	2.3	5
216	Effect of Ancillary Ligands on Oxidative Addition of CH ₄ to Ta(III) Complexes Ta(OC ₂ H ₄) ₃ A (A = B, Al, CH, SiH, N, P): A Density Functional Theory Study. Organometallics, 2017, 36, 64-73.	2.3	5

#	Article	IF	CITATIONS
217	Cooperative Metal + Ligand Oxidative Addition and I_f -Bond Metathesis: A DFT Study. Organometallics, 2018, 37, 309-313.	2.3	5
218	Carbon(sp3)-nitrogen bond-forming reductive elimination from phosphine-ligated alkylpalladium(II) amide complexes: A DFT study. Tetrahedron, 2019, 75, 137-143.	1.9	5
219	A Dicopper Nitrenoid by Oxidation of a CuICuI Core: Synthesis, Electronic Structure, and Reactivity. Journal of the American Chemical Society, 2021, 143, 7135-7143.	13.7	5
220	DFT and TDDFT Study of the Reaction Pathway for Double Intramolecular C–H Activation and Functionalization by Iron, Cobalt, and Nickel–Nitridyl Complexes. Inorganic Chemistry, 2021, 60, 12299-12308.	4.0	5
221	Direct solution of the Schrödinger equation by a parallel genetic algorithm: Cases of an exactly solvable 2-D interacting oscillator and the hydrogen atom. International Journal of Quantum Chemistry, 2003, 94, 243-250.	2.0	4
222	Computing Hydrophobicity. Reviews in Computational Chemistry, 2003, , 43-77.	1.5	4
223	Importance of Nitrogen–Hydrogen Bond p <i>K</i> _a in the Catalytic Coupling of Alkenes and Amines by Amidate Tantalum Complexes: A Computational Study. Journal of Physical Chemistry A, 2019, 123, 8595-8606.	2.5	4
224	Metal and Ligand Effects on Coordinated Methane p <i>K</i> _a : Direct Correlation with the Methane Activation Barrier. Journal of Physical Chemistry A, 2020, 124, 7283-7289.	2.5	4
225	Simulations of Protein Folding. Reviews in Computational Chemistry, 2006, , 169-228.	1.5	3
226	Periodic Trends in 3d Metal Mediated CO2 Activation. ACS Symposium Series, 2013, , 67-88.	0.5	3
227	The Curious Case of Mesityl Azide and Its Reactivity with bpyNiEt ₂ . Inorganic Chemistry, 2014, 53, 11633-11639.	4.0	3
228	Comparison of PdII vs RhI-catalyzed catalytic cycle for single step styrene production. Computational and Theoretical Chemistry, 2017, 1115, 313-322.	2.5	3
229	Effect of Ancillary Ligands (A) on Oxidative Addition of CH ₄ to Rhenium(III) Complexes: A = B, Al, CH, SiH, N, and P Using MP2, CCSD(T), and MCSCF Methods. Journal of Physical Chemistry A, 2017, 121, 5341-5351.	2.5	3
230	Computational Analysis of Proton-Coupled Electron Transfer in Hydrotris(triazolyl)borate Mid–Late 3d and 4d Transition Metal Complexes. Organometallics, 2019, 38, 3521-3531.	2.3	3
231	Computational Determination of p <i>K</i> _a (C–H) in 3d Transition Metal-Methyl Complexes. Organometallics, 2020, 39, 2803-2812.	2.3	3
232	Computational investigations of NHC-backbone configurations for applications in organocatalytic umpolung reactions. Organic and Biomolecular Chemistry, 2020, 18, 7437-7447.	2.8	3
233	Applications of Parallel GAMESS. ACS Symposium Series, 1995, , 29-46.	0.5	2
234	A firstâ€principles study of diatomic NiAl: Ground state, structure, and spectroscopic constants. International Journal of Quantum Chemistry, 2011, 111, 4303-4308.	2.0	2

#	Article	IF	CITATIONS
235	Impact of divalent metal cations on the catalysis of peptide bonds: a DFT study. Journal of Coordination Chemistry, 2014, 67, 3920-3931.	2.2	2
236	Effect of Ligand Connectivity and Charge State on the Amination of C–H Bonds by Copper Amide Complexes. Organometallics, 2015, 34, 5045-5050.	2.3	2
237	Tungsten–Ligand Bond Strengths for 2p Elements Including σ- and π-Bond Strength Components, A Density Functional Theory and ab Initio Study. Journal of Physical Chemistry A, 2019, 123, 7940-7949.	2.5	2
238	Computational Study of Methane C–H Activation by Main Group and Mixed Main Group–Transition Metal Complexes. Molecules, 2020, 25, 2794.	3.8	2
239	Simulating Chemical Waves and Patterns. Reviews in Computational Chemistry, 2004, , 219-247.	1.5	1
240	Data Sources and Computational Approaches for Generating Models of Gene Regulatory Networks. Reviews in Computational Chemistry, 2005, , 381-411.	1.5	1
241	Toward a More Rational Design of the Direct Synthesis of Aniline: A Density Functional Theory Study. ACS Omega, 2017, 2, 3214-3227.	3.5	1
242	A family of structural and functional models for the active site of a unique dioxygenase: Acireductone dioxygenase (ARD). Journal of Inorganic Biochemistry, 2020, 212, 111253.	3.5	1
243	Investigating the non-classical M-H2 bonding in OsClH3(PPh3)3. Journal of Alloys and Compounds, 2021, 894, 162445.	5.5	1
244	Loop Interaction in Human Glutathione Synthetase. FASEB Journal, 2006, 20, A473.	0.5	1
245	DFT Calculations Investigate Competing Pathways to Form Dimeric Neopentylpalladium(II) Amido Complexes: The Critical Importance of Dispersion. Journal of Physical Chemistry A, 2020, 124, 8798-8805.	2.5	0
246	Thermochemistry of Tungsten—3p Elements for Density Functional Theory, Caveat Lector!. Journal of Physical Chemistry A, 2021, 125, 681-690.	2.5	0
247	Bifunctional activation of methane by bioinspired transition metal complexes. A simple methane protease model. Computational and Theoretical Chemistry, 2021, 1198, 113180.	2.5	0
248	Subunit Interactions of Human Glutathione Synthetase. FASEB Journal, 2007, 21, .	0.5	0
249	Crystal Structure and DFT Calculations of Bis(tetrahydridoborato)bis(cyclopentadienyl)zirconium(IV). Journal of Chemical Crystallography, 0, , 1.	1.1	0
250	Olefin oligomerization by zirconium boratabenzene catalysts. Journal of Organometallic Chemistry, 2022, 962, 122268.	1.8	0