Jochen Zeil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8053635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anesthesia disrupts distance, but not direction, of path integration memory. Current Biology, 2022, 32, 445-452.e4.	3.9	12
2	The Antarium: A Reconstructed Visual Reality Device for Ant Navigation Research. Frontiers in Behavioral Neuroscience, 2020, 14, 599374.	2.0	13
3	Cyclic nature of the REM sleep-like state in the cuttlefish <i>Sepia officinalis</i> . Journal of Experimental Biology, 2019, 222, .	1.7	29
4	Orientation, Navigation, and Search. , 2019, , 290-300.		0
5	An insect-inspired model for acquiring views for homing. Biological Cybernetics, 2019, 113, 439-451.	1.3	10
6	The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). Journal of Experimental Biology, 2019, 223, .	1.7	29
7	Crabs and Their Visual World. , 2019, , 201-212.		0
8	Diversity and common themes in the organization of ocelli in Hymenoptera, Odonata and Diptera. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2018, 204, 505-517.	1.6	13
9	Insect learning flights and walks. Current Biology, 2018, 28, R984-R988.	3.9	55
10	Fractal dimension and the navigational information provided by natural scenes. PLoS ONE, 2018, 13, e0196227.	2.5	7
11	The choreography of learning walks in the Australian jack jumper ant <i>Myrmecia croslandi</i> . Journal of Experimental Biology, 2018, 221, .	1.7	46
12	How Ants Use Vision When Homing Backward. Current Biology, 2017, 27, 401-407.	3.9	55
13	Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors. Journal of Experimental Biology, 2017, 220, 1701-1708.	1.7	12
14	The sensory arrays of the ant, Temnothorax rugatulus. Arthropod Structure and Development, 2017, 46, 552-563.	1.4	10
15	Threeâ€dimensional visualization of ocellar interneurons of the orchid bee <i>Euglossa imperialis</i> using micro Xâ€ray computed tomography. Journal of Comparative Neurology, 2017, 525, 3581-3595.	1.6	5
16	Three-dimensional visualization of ocellar interneurons of the orchid bee Euglossa imperialis using micro X-ray computed tomography. Journal of Comparative Neurology, 2017, 525, spc1-spc1.	1.6	0
17	Sounds of Modified Flight Feathers Reliably Signal Danger in a Pigeon. Current Biology, 2017, 27, 3520-3525.e4.	3.9	26
18	Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes. PLoS ONE, 2017, 12, e0187226.	2.5	16

JOCHEN ZEIL

#	Article	IF	CITATIONS
19	Head roll stabilisation in the nocturnal bull ant <i>Myrmecia pyriformis</i> : Implications for visual navigation. Journal of Experimental Biology, 2016, 219, 1449-57.	1.7	18
20	Light and dark adaptation mechanisms in the compound eyes of Myrmecia ants that occupy discrete temporal niches. Journal of Experimental Biology, 2016, 219, 2435-2442.	1.7	30
21	How Wasps Acquire and Use Views for Homing. Current Biology, 2016, 26, 470-482.	3.9	90
22	The visual system of the Australian â€~Redeye' cicada (Psaltoda moerens). Arthropod Structure and Development, 2015, 44, 574-586.	1.4	9
23	Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150673.	2.6	33
24	Three-dimensional models of natural environments and the mapping of navigational information. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 563-584.	1.6	46
25	Functional anatomy of the fiddler crab compound eye (<i>Uca vomeris</i> : Ocypodidae, Brachyura,) Tj ETQq1	1 0.784314 1.6	4 rgBT /Overlo
26	Still no convincing evidence for cognitive map use by honeybees. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4396-7.	7.1	61
27	The antennal sensory array of the nocturnal bull ant Myrmecia pyriformis. Arthropod Structure and Development, 2014, 43, 543-558.	1.4	19
28	Looking and homing: how displaced ants decide where to go. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130034.	4.0	73
29	Ground-Nesting Insects Could Use Visual Tracking for Monitoring Nest Position during Learning Flights. Lecture Notes in Computer Science, 2014, , 108-120.	1.3	5
30	Polarisation Vision in Ants, Bees and Wasps. , 2014, , 41-60.		43
31	Systematic variations in microvilli banding patterns along fiddler crab rhabdoms. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 99-113.	1.6	17
32	Mapping the navigational knowledge of individually foraging ants, <i>Myrmecia croslandi</i> . Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130683.	2.6	111
33	Feed-forward and visual feed-back control of head roll orientation in wasps (Polistes humilis,) Tj ETQq1 1 0.784	1314 rgBT /	Overlock 10 T
34	Visual homing: an insect perspective. Current Opinion in Neurobiology, 2012, 22, 285-293.	4.2	212
35	The properties of the visual system in the Australian desert ant Melophorus bagoti. Arthropod Structure and Development, 2011, 40, 128-134.	1.4	86
36	The organization of honeybee ocelli: Regional specializations and rhabdom arrangements. Arthropod Structure and Development, 2011, 40, 509-520.	1.4	32

JOCHEN ZEIL

#	Article	IF	CITATIONS
37	Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. Journal of Experimental Biology, 2011, 214, 363-370.	1.7	102
38	Caste-specific visual adaptations to distinct daily activity schedules in Australian <i>Myrmecia</i> ants. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1141-1149.	2.6	68
39	Natural visual cues eliciting predator avoidance in fiddler crabs. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3584-3592.	2.6	39
40	Different effects of temperature on foraging activity schedules in sympatric <i>Myrmecia</i> ants. Journal of Experimental Biology, 2011, 214, 2730-2738.	1.7	81
41	Variability of a dynamic visual signal: the fiddler crab claw-waving display. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195, 55-67.	1.6	34
42	Visual Homing in Insects and Robots. , 2009, , 87-100.		30
43	Image motion environments: background noise for movement-based animal signals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 441-456.	1.6	41
44	Vision and the organization of behaviour. Current Biology, 2008, 18, R320-R323.	3.9	50
45	The information content of panoramic images I: The rotational errors and the similarity of views in rectangular experimental arenas Journal of Experimental Psychology, 2008, 34, 1-14.	1.7	114
46	The information content of panoramic images II: View-based navigation in nonrectangular experimental arenas Journal of Experimental Psychology, 2008, 34, 15-30.	1.7	82
47	Eye structure correlates with distinct foraging-bout timing in primitive ants. Current Biology, 2007, 17, R879-R880.	3.9	71
48	Differences in context and function of two distinct waving displays in the fiddler crab, Uca perplexa (Decapoda: Ocypodidae). Behavioral Ecology and Sociobiology, 2007, 62, 137-148.	1.4	32
49	Depth, contrast and view-based homing in outdoor scenes. Biological Cybernetics, 2007, 96, 519-531.	1.3	104
50	The visual ecology of fiddler crabs. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192, 1-25.	1.6	195
51	Fiddler crabs. Current Biology, 2006, 16, R40-R41.	3.9	36
52	Interactions of visual odometry and landmark guidance during food search in honeybees. Journal of Experimental Biology, 2005, 208, 4123-4135.	1.7	25
53	Sex, size and colour in a semi-terrestrial crab, Heloecius cordiformis (H. Milne Edwards, 1837). Journal of Experimental Marine Biology and Ecology, 2004, 302, 1-15.	1.5	22
54	Robust judgement of inter-object distance by an arthropod. Nature, 2003, 421, 160-163.	27.8	60

JOCHEN ZEIL

#	Article	IF	CITATIONS
55	Catchment areas of panoramic snapshots in outdoor scenes. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 450.	1.5	258
56	Path Integration in Fiddler Crabs and Its Relation to Habitat and Social Life. , 2002, , 227-246.		39
57	Towards an Ecology of Motion Vision. , 2001, , 333-369.		32
58	Signals from †̃crabworld': cuticular reflections in a fiddler crab colony. Journal of Experimental Biology, 2001, 204, 2561-2569.	1.7	51
59	Homing in fiddler crabs (Uca lactea annulipes and Uca vomeris  : Ocypodidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998, 183, 367-377.	1.6	85
60	Fiddler Crabs Use the Visual Horizon to Distinguish Predators from Conspecifics: A Review of the Evidence. Journal of the Marine Biological Association of the United Kingdom, 1997, 77, 43-54.	0.8	68
61	A glimpse into crabworld. Vision Research, 1997, 37, 3417-3426.	1.4	53
62	Flights of Learning. Current Directions in Psychological Science, 1996, 5, 149-155.	5.3	43
63	Short communication: Substratum Slope and the Alignment of Acute Zones in Semi-Terrestrial Crabs (Ocypode Ceratophthalmus). Journal of Experimental Biology, 1990, 152, 573-576.	1.7	19
64	Multisensory control of eye-stalk orientation in space: crabs from different habitats rely on different senses. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989, 165, 643-649.	1.6	27
65	Spatial Vision in a Flat World: Optical and Neural Adaptations in Arthropods. , 1989, , 123-137.		26
66	Sexual dimorphism in the visual system of flies: The compound eyes and neural superposition in bibionidae (Diptera). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1983, 150, 379-393.	1.6	98