
Deborah G Herrington

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/805315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adapting Assessment Tasks To Support Three-Dimensional Learning. Journal of Chemical Education, 2018, 95, 207-217.	2.3	74
2	What Defines Effective Chemistry Laboratory Instruction? Teaching Assistant and Student Perspectives. Journal of Chemical Education, 2003, 80, 1197.	2.3	72
3	Probing the Mechanisms of Enantioselective Hydrogenation of Simple Olefins with Chiral Rhodium Catalysts in the Presence of Anions. Chemistry - A European Journal, 2000, 6, 139-150.	3.3	43
4	Evaluating the extent of a large-scale transformation in gateway science courses. Science Advances, 2018, 4, eaau0554.	10.3	42
5	Helping Students to "Do Scienceâ€: Characterizing Scientific Practices in General Chemistry Laboratory Curricula. Journal of Chemical Education, 2019, 96, 423-434.	2.3	41
6	Target inquiry: changing chemistry high school teachers' classroom practices and knowledge and beliefs about inquiry instruction. Chemistry Education Research and Practice, 2011, 12, 74-84.	2.5	25
7	Characterizing college science instruction: The Three-Dimensional Learning Observation Protocol. PLoS ONE, 2020, 15, e0234640.	2.5	25
8	Indirect electrochemical carbonylation of aromatic amines with a palladium catalyst. Tetrahedron Letters, 1994, 35, 8761-8764.	1.4	23
9	I Want to be the Inquiry Guy! How Research Experiences for Teachers Change Beliefs, Attitudes, and Values About Teaching Science as Inquiry. Journal of Science Teacher Education, 2016, 27, 183-204.	2.5	21
10	Target Inquiry: Helping Teachers Use a Research Experience To Transform Their Teaching Practices. Journal of Chemical Education, 2012, 89, 442-448.	2.3	20
11	Development and Validation of Scientific Practices Assessment Tasks for the General Chemistry Laboratory. Journal of Chemical Education, 2020, 97, 884-893.	2.3	20
12	No Teacher Is an Island: Bridging the Gap between Teachers' Professional Practice and Research Findings. Journal of Chemical Education, 2016, 93, 1371-1376.	2.3	18
13	Improving practice with target inquiry: high school chemistry teacher professional development that works. Chemistry Education Research and Practice, 2011, 12, 344-354.	2.5	17
14	Strategies for Teaching Chemistry Online: A Content Analysis of a Chemistry Instruction Online Learning Community during the Time of COVID-19. Journal of Chemical Education, 2020, 97, 2825-2833.	2.3	17
15	Use of Simulations and Screencasts to Increase Student Understanding of Energy Concepts in Bonding. Journal of Chemical Education, 2021, 98, 730-744.	2.3	17
16	Using Interviews in CER Projects: Options, Considerations, and Limitations. ACS Symposium Series, 2014, , 31-59.	0.5	14
17	A Neutral Donor-Acceptor p-Stack: Solid-State Structures of 1 : 1 Pyromellitic Diimide-Dialkoxynaphthalene Cocrystals. Australian Journal of Chemistry, 1997, 50, 271.	0.9	14
18	Students' Independent Use of Screencasts and Simulations to Construct Understanding of Solubility Concepts. Journal of Science Education and Technology, 2017, 26, 359-371.	3.9	13

#	Article	IF	CITATIONS
19	The Impact of Core-Idea Centered Instruction on High School Students' Understanding of Structure–Property Relationships. Journal of Chemical Education, 2019, 96, 1327-1340.	2.3	13
20	Supporting students' conceptual understanding of kinetics using screencasts and simulations outside of the classroom. Chemistry Education Research and Practice, 2019, 20, 685-698.	2.5	13
21	Tool trouble: Challenges with using selfâ€report data to evaluate longâ€term chemistry teacher professional development. Journal of Research in Science Teaching, 2016, 53, 1055-1081.	3.3	11
22	Adapting a Core-Idea Centered Undergraduate General Chemistry Curriculum for Use in High School. Journal of Chemical Education, 2019, 96, 1318-1326.	2.3	11
23	Professional Development Aligned with AP Chemistry Curriculum: Promoting Science Practices and Facilitating Enduring Conceptual Understanding. Journal of Chemical Education, 2014, 91, 1368-1374.	2.3	10
24	<i>Sticky Ions</i> : A Student-Centered Activity Using Magnetic Models to Explore the Dissolving of Ionic Compounds. Journal of Chemical Education, 2014, 91, 860-863.	2.3	10
25	Improving conceptual understanding of gas behavior through the use of screencasts and simulations. International Journal of STEM Education, 2021, 8, .	5.0	9
26	The Heat Is On: An Inquiry-Based Investigation for Specific Heat. Journal of Chemical Education, 2011, 88, 1558-1561.	2.3	8
27	Using Text Messages To Encourage Meaningful Self-Assessment Outside of the Classroom. Journal of Chemical Education, 2018, 95, 2148-2154.	2.3	5
28	Supporting the Growth and Impact of the Chemistry-Education-Research Community. Journal of Chemical Education, 2019, 96, 393-397.	2.3	5
29	ChemSims: using simulations and screencasts to help students develop particle-level understanding of equilibrium in an online environment before and during COVID. Chemistry Education Research and Practice, 2022, 23, 644-661.	2.5	4
30	Kinematics Card Sort Activity: Insight into Students' Thinking. Physics Teacher, 2016, 54, 541-544.	0.3	3
31	Semi-quantitative Characterization of Secondary Science Teachers' Use of Three-Dimensional Instruction. Journal of Science Teacher Education, 2019, 30, 379-408.	2.5	3
32	3, 2, 1 … Discovering Newton's Laws. Physics Teacher, 2017, 55, 149-151.	0.3	2
33	Formative assessments using text messages to develop students' ability to provide causal reasoning in general chemistry. Canadian Journal of Chemistry, 2020, 98, 15-23.	1.1	2
34	Target Inquiry. Advances in Higher Education and Professional Development Book Series, 0, , 383-416.	0.2	0